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Abstract

Silymarin has long been used as a hepatoprotective remedy. Chronic toxicity studies in rodents have confirmed
that silymarin has a very low toxicity. These data support its history as a safe medication in hepatic diseases. In the
last years, several studies expanded our understanding of the pharmacology of silymarin and its molecular
mechanisms of action. These new insights may affect the handling of silymarin in clinical studies and daily practice.
Additionally, scientific knowledge in hepatology is constantly evolving with, particularly, an increase in the field of
non-alcoholic fatty liver disease which is considered today as the most frequent liver disease worldwide.
In this review, we will describe scientific evidence for the effectiveness of silymarin in hepatic disorders. We will
focus on silymarin’s pharmacological effects in non-alcoholic fatty liver disease and on its well described effects in
alcoholic liver disease and acute intoxications, e.g. with Amanita species. We will discuss the relevance of
pharmacological data as a function of doses or concentrations required for a given effect and of concentrations
achieved in the target tissues. Many pharmacological effects of silymarin can be attributed to effects downstream
or upstream of its antioxidative and membrane-stabilizing properties. However, despite promising new
experimental and clinical data further clinical studies are required including long-term observations and the
application of hard clinical endpoints such as survival rates, to further support silymarin’s use for the treatment of
hepatic diseases.
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Introduction
Carduus marianus, Silybum marianum, or milk thistle
is an edible Mediterranean herbal with a very long his-
tory as medicinal plant. Probably, this practice was also
supported by the religious connotations of its name (e.g.
chardon marie, Mariendistel, Saint Mary’s thistle, etc.).
The currently employed standardized milk thistle ex-
tracts made from the fruits contain 30–65 % silymarin
as active ingredient. Silymarin is a complex mixture of
polyphenolic molecules, including seven closely related
flavonolignans, i.e. silibin A, silibin B, isosilibin A, isosili-
bin B, silichristin, isosilichristin, silidianin and the fla-
vonoid taxifolin, the most effective antioxidant of these
molecules [1]. Silymarin administered per os has become
a frequently applied therapy for various liver disorders.
Silymarin is classified by the WHO Anatomical Thera-
peutic Chemical (ATC) classification system as liver

therapy (A05BA03). Approved indications are described
as toxic and inflammatory liver diseases although at low
doses it is also recommended for dyspepsia.
Due to chronic alcohol abuse and modern live style

liver disease continues to be a major health concern and
the search for new but also the optimization of known
agents for the therapy of liver diseases are still of great
importance. According to the World Health Organization
(WHO), alcohol is the third largest risk factor for prema-
ture mortality, disability and loss of health. Importantly,
alcoholic liver disease is responsible for the majority of
alcohol-related deaths [2, 3]. At the same time, non-
alcoholic fatty liver disease (NAFLD) is emerging as an
even larger health problem and NAFLD is considered
today as the most common liver diseases worldwide. The
prevalence of NAFLD in the general population of West-
ern countries is up to 30 %, and a significant number of
these individuals are developing non-alcoholic steatohepa-
titis (NASH) which may progress to liver cirrhosis and he-
patocellular carcinoma (HCC). Already today, NASH is
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reported to be the third most common indication for liver
transplantation in the United States [4, 5]. A large propor-
tion of patients with NAFLD have a co-existing metabolic
syndrome with symptoms like central obesity, dyslipid-
emia and insulin resistance. These patients have a major
risk factor for cardiovascular diseases [6]. In Europe the
estimated prevalence rate of NAFLD is up to 30 % in the
general population (including obese children) and up to
70 % in people with type 2 diabetes. These conditions [7]
generate large direct costs, loss of productivity and income
and poor health-related quality of life [8].
In addition to the above mentioned life style-

dependent liver disorders, viral infections, i.e. hepatitis B
virus (HBV) and hepatitis C virus (HCV) infections, are
causing chronic liver disease. A predominant decline in
prevalence of HBV infections was achieved with imple-
mentation of vaccine programs and mandatory screen-
ings of blood donors improved HCV management in
most countries. However, the WHO estimates that -
with large geographical variations - two to three percent
of the world’s population are still infected with HCV.
This results in a total number of 120 to 170 million
HCV infected people that also carry a high risk to de-
velop liver disease, i.e. liver cirrhosis and HCC [9]. Anti-
viral therapy applies nucleoside analogs and interferon-
alpha and targets viral replication as well as anti-viral
immune responses, i.e. activation of T cells and modula-
tion of innate immune cells [10]. Due to its antiviral
properties in vitro [11] silymarin had been considered a
promising additional candidate for the treatment of
acute infection with HBV and HCV. However, little or
no benefit was shown in clinical trials [12, 13]. The
long-term effects in the treatment of chronic HCV as an
additive to for example nucleoside analogues or inter-
ferons remains to be assessed [14, 15] and will not be
further discussed in this review.
The complexity of the liver explains that one single

pharmacological intervention is unlikely to cause a
major functional change by itself unless it touches a very
specific ‘bottle neck’ in a chain of events. Nutrients
absorbed through the gut are transported to the liver
through the portal vein blood flow. Hepatic function is
regulated by blood-derived hormones, cytokines and adi-
pokines. Additionally, intestinal hormones and transmit-
ters of the vegetative nervous system exert a strong
influence on the liver. Different cell types among which
hepatocytes are most abundant are involved in the con-
trol of immunity and inflammation. Stellate cells that
can transform into myofibroblast-like cells upon activa-
tion are centrally involved in the fibrotic response ob-
served in chronic liver disease. Fibrosis contributes to
the ability of hepatocytes to regenerate after injury or re-
section [16]. An additional player in liver disease is the
gut microbiome. The complex interaction of the gut

flora with the intestinal immune system effects the de-
velopment of a phenotype of liver disease both in mice
as well as in patients [17, 18].
During the last 20 years our understanding of liver dis-

eases and their treatment has undergone a remarkable
evolution. Therefore, we aimed to reassess the current
perception of silymarin within this changing environ-
ment. In 2014, about 200 articles dealing with silymarin
- among those 8 clinical reports - have been published,
reflecting the continued interest in this plant extract.
Preclinical data exhibit potent antiinflammatory, antifi-
brotic, antiviral, and antioxidative properties of silymarin
[19]. However, the predictive value of animal and in vitro
models is sometimes misleading and may have led to
failures of translation into the clinical practice for many
years [20]. A classic example was the aforementioned
role of silymarin in chronic viral hepatitis [11–13]. Not
all of the published studies fulfill high scientific stan-
dards. Once we cite studies with less clear-cut scientific
evidence in this review, we describe the limitations and
focus on the bits of evidence which may fit or not into a
logical puzzle of the current scientific knowledge with
respect to silymarin [20]. Furthermore, to be of clinical
interest, experimental data on silymarin should be ob-
tained at doses and administration routes comparable to
those used in clinical settings. Moreover, there should be
evidence that silymarin reaches effective concentrations
in the target organ or tissue.
Going through this review, the reader will have to take

into account the anatomical and functional complexity
of the liver, i.e. experimental or clinical data will always
just shed light on some partial aspects of the pathophysi-
ology or show some final outcome without providing a
complete insight about how this came to be [21, 22].

Review
Search strategy and methods are described in the
Additional file 1.

Toxicology
Silymarin has been known for its very low toxicity, but
the picture has recently been enlarged by an important
chronic toxicity study which added some new data on
neoplasias. Toxicological data are crucial for the calcula-
tion of the therapeutic index, i.e. the ratio of the highest
exposure of the drug that results in no toxicity to the ex-
posure that produces the desired effect, and risk benefit
assessment of a drug.

Acute toxicity
Acute toxicity studies of silymarin after intravenous infu-
sion have been carried out in mice, rats, rabbits and
dogs. The LD50 values were 400 mg/kg in mice, 385 mg/
kg in rats, and 140 mg/kg in rabbits and dogs though
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these values were dependent on infusion rate. With slow
infusion rate (over 2 to 3 h) the LD50 increased to 2 g/kg
in rats and after oral administration it was even 10 g/kg
[23].

Chronic toxicity
The large safety margin of silymarin was shown in the
“milk thistle report NTP TR 565” [24, 25]. The investi-
gators gave feed containing 12,500, 25,000, or 50,000
parts per million (1.25 %, 2.5 %, or 5 %) of milk thistle
extract to groups of 50 male and female rats and mice
for two years. At the end of the experiments there was
no incidence for toxicity comparing the survival of
treated animals with the untreated controls. There was
also no incidence for the development of cancers.

Genetic toxicity
Some milk thistle constituents yield a positive Ames test
[26]. However, having not shown any indication of car-
cinogenicity in animal studies, silymarin extracts are cur-
rently considered as non-carcinogens (HMPC
Genotoxicity Guideline) [24, 26]. With silymarin, but
not silibinin, the Ames test was positive in S. typhimur-
ium strains TA98 and TA100, when testing occurred
with liver S9 activation enzymes. Administration of milk
thistle extract in feed for 3 months did not increase the
frequencies of micro-nucleated normochromatic eryth-
rocytes, an indication of chromosomal abnormalities, in
the peripheral blood of mice [24, 26].

Human safety
In blinded clinical trials the overall incidence of adverse
events was 2.4 % (similar to placebo) while in open trials
the incidence of adverse events was 1 %. The most com-
mon adverse event associated with silymarin use is a
laxative effect; other symptoms include nausea, epigas-
tric discomfort, arthralgia, pruritis, and urticaria. Con-
sidering all published randomized trials, uncontrolled
studies, and case reports, only one serious adverse event
has been considered related to silymarin (diarrhea,
vomiting, and collapse in a 57 year old woman) [27].

Pharmacokinetics
Silymarin is a non-lipophilic, poorly water soluble
(0.05 mg/mL) mixture of flavonolignans; it is transported

bound to serum albumin as the carrier protein [28].
Table 1 summarizes the pharmacokinetic parameters of
silymarin in human healthy volunteers [29–31].
Interestingly, the disease status has been shown to

have a major impact on the pharmacokinetics of sily-
marin. After a single oral dose of 600 mg, the Cmax

and AUC of plasma concentrations for total silymarin
flavonolignans were 2.4- to 4.7-fold higher in patients
compared to healthy volunteers [29, 32]. For example,
mean AUC 0-24h was two times higher in HCV pa-
tients without cirrhosis, or four times higher in pa-
tients with cirrhosis and three times higher in
patients with NAFLD. Only NAFLD subjects showed
evidence of enterohepatic cycling of flavonolignans
which may support the efficacy of silymarin in this
indication. At an oral dose of 560 mg of silymarin
and comparing with non-cirrhotic HCV subjects,
NAFLD subjects had blood AUC0–48 values for silybin
A and silybin B which were 1.5-fold and 2.1-fold
greater, respectively, than found in healthy controls.
Elimination half-lives were similar between the disease
groups (range 1.1–1.5 h), whereas Tmax was delayed
by 1 h in NAFLD patients, suggesting that a reduced
silymarin metabolism may cause the differences in
drug exposure between NAFLD and HCV subjects
[32]. In conclusion, pharmacokinetic data implicate a
strong correlation between the state of liver damage
and bioavailability of silymarin.
A group of non-cirrhotic patients with chronic HCV

infection received oral doses of 140, 280, 560, or 700 mg
silymarin every 8 h for 7 days. No drug-related adverse
events were observed. With a 5-fold increase in dose,
the steady-state exposures for silybin A and silybin B in-
creased 11-fold and 38-fold, respectively, suggesting
non-linear pharmacokinetics. These findings suggest that
low bioavailability associated with customary doses of
silymarin may be overcome with doses above 700 mg
three times a day (tid) [33].
Referring to the tissue distribution of silymarin it

can be concluded from different studies in patients
with colorectal carcinoma and studies in mice [34]
that the highest tissue [35] concentration was found
in the colon [36] whereas the lowest concentration
was detected in the brain and the prostate [35, 37];
the liver tissue had concentrations similar as found in

Table 1 Summary of pharmacokinetic parameters of silymarin in the human body [29–31]

Tmax Plasmatic half life
(non-conjugated)

Cmax (oral dose of 600 mg) Metabolism Excretion

1.0–3.7 h 1–3,2 h 53.1 ng/ml (free flavonolignans)
84.3 ng/ml (sulphated silymarin)
168 ng/ml (glucoronidated silymarin)

Phase II metabolitessulphates,
glucorinide, diglucorinides

via bile and urine

(conjugated)

3.3–7.9 h
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the blood. This might be explained by the main ab-
sorption of silymarin by the GI tract and its low
bioavailability.

Interactions
In spite of a fairly large amount of studies dedicated to
these potential problems, no clinically relevant interac-
tions between silymarin and other drugs have been
identified upon administration in the recommended cus-
tomary doses. In the following, some key elements are
highlighted.

Silymarin
Silymarin, silibinin A, and silibinin B at high
concentrations significantly inhibited Organic Anion-
Transporting Polypeptides (OATP)-mediated estradiol-
17β-glucuronide and rosuvastatin uptake into human
hepatocytes. However, calculation of the maximal un-
bound portal vein concentrations/IC50 values indi-
cated a low risk for silymarin-drug interactions in
hepatic uptake with a customary silymarin dose.
Higher than customary doses of silymarin, or formu-
lations with improved bioavailability, might increase
the risk of flavonolignan interactions with OATP sub-
strates in patients [38]. In Chinese volunteers, the co-
administration of silymarin 140 mg tid during 2 weeks
with talinolol, a typical substrate of multidrug resist-
ance (MDR1) P-glycoprotein, led to an increase of the
plasmatic AUC of the later by 36 % [39].
Several studies dealt with cytochrome P450 induction

in primary human hepatocytes and for cytochrome P450
inhibition with human liver microsomes. For the cur-
rently employed doses, drug-drug interactions are pos-
sible for CYPs 2C8 and 2C9, but not likely, and are
remote for CYP 2C19, 2D6, and 3A4 [40–42].

Silibinin
Silibinin A and silibinin B were reported to inhibit
CYP2C9 in human liver microsomes using the clinic-
ally relevant probe (S)-warfarin at possibly therapeutic
concentrations. These observations combined with the
high systemic silibinin concentrations suggested a po-
tential warfarin-milk thistle interaction [43]. However,
a proof-of-concept clinical study showed only minimal
interaction between a high-dose of silibinin in com-
bination with both midazolam (CYP3A and (S)-war-
farin 9 and 13 % increase in AUC, respectively) [44].

General pharmacology
Observations in the 1980ies suggested that silymarin
and its components are incorporated into the
hydrophobic-hydrophilic interface of the microsomal
bilayer, affecting the packing of the acyl chains and
restoring the membrane fluidities of liver microsomes

and mitochondria [45, 46]. Already some years earlier
it has been reported that silymarin “might exert sta-
bilizing effects at the membrane level, by virtue of its
action upon membrane-bound enzymatic activities”
[47]. Silymarin appears to act as an antioxidant not
only because it acts as a scavenger of the free radicals
that induce lipid peroxidation, but also because it in-
fluences enzyme systems associated with glutathione
and superoxide dismutase, mainly by increasing the
expression and activation of the nuclear transcription
factor (erythroid-derived 2)-like 2 factor (Nrf2) [48,
49]. At high concentrations, silymarin consistently in-
creases the hepatocellular plasma membrane stability
in vitro [50].
Lipid peroxidation is attributed to be one of the major

mechanisms leading to degeneration of cell membranes
and the development of liver disease. Under those condi-
tions the hepatoprotective effects of silymarin appear to
depend mainly on five properties:

� activity against lipid peroxidation as a result of free
radical scavenging and the ability to increase the
cellular content of glutathion (GSH) [34, 51];

� ability to regulate membrane permeability and to
increase membrane stability in the presence of
xenobiotic damage [50];

� capacity to regulate nuclear expression by means of
a steroid-like effect (attributed to a structural simi-
larity of silymarin to steroid hormones) followed by
tissue regeneration [52, 53];

� inhibition of the transformation of quiescent hepatic
stellate cells into activated myofibroblasts which are
responsible for the deposition of collagen fibres
leading to cirrhosis [54, 55];

� anti-inflammatory effect resulting in a decrease of
hepatic inflammation and inflammatory cytokines,
possibly as a result of reduced tissue damage [56].

It is well known that low levels of reactive oxygen
species (ROS) are actively involved in the regulation
of signal transduction pathways as essential intracellu-
lar second messenger for certain cytokines and
growth factor receptors, as well as of the insulin sig-
nal transduction [57]. Moreover, under pathological
conditions, an excess of ROS induces apoptosis or ne-
crosis by activating mitogen-activated protein kinases
(MAPK) and caspase cascades [58].
Of the multitude of pharmacological effects attrib-

uted to silymarin in recent years, most can be
explained as downstream or upstream effects of these
five properties, particularly the antioxidative effects.
In Fig. 1 some of these numerous effects are plotted
by effective doses or concentrations, an approach
already proposed by other authors [59]. This shows
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that the effects within the therapeutic range are
probably mostly related to antioxidative and mem-
brane (OATP)-related properties (Additional file 2).

Clinical and specific pharmacological data
Alcoholic liver disease
Excessive consumption of alcohol causes liver damage
via different mechanisms including oxidative stress, hyp-
oxia, upregulation of pro-inflammatory cytokines, and
metabolic effects involving various liver cell types. Acti-
vated Kupffer cells release a variety of potentially dam-
aging substances including cytokines, reactive oxygen
species (ROS) and reactive nitrogen species (RNS) that
negatively affect hepatocytes and may lead to the activa-
tion of hepatic stellate cells [60, 61]. The response in he-
patocytes includes mitochondrial damage (increase of
mitochondrial AST), relative hepatic ATP depletion and
altered nitric oxide (NO)-dependent control of respir-
ation. An acceleration and propagation of these

processes leads to increased hepatic inflammation,
cirrhosis and HCC.

Animal models
There are many similarities between hepatotoxic agents
used in animal models and the effects of chronic alco-
holism. Classical animal models employ carbon tetra-
chloride (CCl4) as hepatotoxic agents [62]. CCl4 is
mainly activated by cytochrome P450 CYP 2E1 to form
the trichloromethyl peroxyl radical which initiates lipid
peroxidation of polyunsaturated fatty acids. In humans,
the microsomal ethanol oxidizing system (MEOS) - in-
duced in individuals who chronically consume alcohol -
also involves the cytochrome P450 CYP2E1 [63, 64].
Similar to ethanol intoxication, CCl4 progressively de-
grades lipids in highly reactive small molecules such as
malondialdehyde (MDA) which end up inactivating the
calcium pump leading to calcium influx into hepatocytes
[65, 66]. All these alterations eventually lead to liver cell

Fig. 1 Main hepatic effects of silymarin in vivo and in vitro and by doses/concentrations. The figure displays an overview on dose- or
concentration-dependent effects of silymarin. For in vivo data the dotted line marks the threshold of doses above the therapeutic range
in mice and humans [130]. The threshold used for the evaluation of in vitro effects of silymarin observed at concentrations representative
for the therapeutic range in vivo was calculated according to the possible Cmax after a single oral dose of 600 mg silymarin as referred
to in Wen Z., et al. [29]. The threshold used for representative in vitro data corresponded to approximately 34 times the near peak
plasma levels after a single human dose of 600 mg silymarin. For references see Additional file 2
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death accompanied by the release of intrahepatic en-
zymes into the blood. Results from animal models apply-
ing CCl4 as well as other hepatotoxic agents, e.g.
paracetamol, show a significant change in hepatic acute
phase enzymes and pro-fibrotic markers due to silymarin
application (Table 2) [67, 68]. In a further experiment in
rats, using CCl4 as the offending agent, a dose of 50 mg/
kg of silymarin was found to be more effective than
200 mg/kg in reducing oxidative stress, lysis of hepato-
cytes, activation of Kupffer cells, and the expression of
alpha smooth muscle actin (α-SMA) and transforming
growth factor beta 1 (TGF-β1) [54]. These results con-
firm the hepatoprotective effect of silymarin in acute in-
toxication. As shown in Fig. 1 silymarin inhibits several
of these steps at relatively low concentrations.

Clinical data
Despite of these potentially interesting experimental data
no recent clinical studies on the role of silymarin in al-
coholic hepatopathies (excluding cirrhosis) are available.
Older trials which have been reviewed previously [69]
showed improvement in clinical parameters associated
with alcoholic liver disease (Table 3).
In 1981, Di Mario and coworkers performed a ran-

domized, placebo controlled clinical trial over two
month. 43 patients with alcohol-induced liver disease
were treated with 420 mg silymarin per day (Table 3).
The results showed statistically significant reduction in
alanine transaminase (ALT), aspartate transaminase
(AST), bilirubin, and prothrombin in the blood. Further-
more, clinical symptoms like weakness, anorexia, and
nausea improved under silymarin treatment [70]. The
same doses of silymarin were applied in a trial with 97
patients by Salmi and Sama in 1982 over a period of one
month. The clinical trial was performed as a random-
ized, double blinded versus placebo controlled study. Pa-
tients with acute or subacute alcoholic liver disease
treated with milk thistle extract showed decreased liver
transaminase levels compared to the non-treated group
[71].
Two other clinical trials also evaluated the effect on

patients with alcoholic liver disease. Feher and co-
workers included 36 patients who were treated with

140 mg Silymarin three times a day [72]. In this study
ALT and AST levels normalized. γ-GT and pro-collagen
levels decreased in the silymarin group. Clinically, an
improvement in liver function was detectable. A further
study which included 12 patients treated with 420 mg
milk thistle extract per day for six month focused pre-
dominantly on antioxidative effects of silymarin, i.e. ex-
pression of superoxide dismutase in macrophages and
erythrocytes [73]. However, the observed effects failed to
reveal significance [73].
All trials did not show dramatic changes but con-

firmed milk thistle preparations as safe medication in
patients with alcoholic liver disease. Therefore, new and
larger trails over prolonged periods of time may answer
the still open questions and may establish milk thistle as
one therapeutic option for the treatment of alcoholic
liver disease.

Non-alcoholic fatty liver disease
The diagnosis of non-alcoholic fatty liver disease
(NAFLD) requires the evidence of hepatic steatosis (by
imaging or histology) and the exclusion of other causes
of liver disease causing steatosis. NAFLD is usually
asymptomatic, so diagnosis in most cases follows the in-
cidental finding of abnormal liver enzymes in the labora-
tory or steatosis on imaging. If abnormal liver function
tests are present, they show only mildly raised transami-
nases (ALT > AST) and/or γ-GT. However, it has been
claimed that up to 80 % of patients have normal-range
ALT levels [74, 75]. With progression of NAFLD to
NASH patients often exhibit metabolic alterations in-
cluding decreased insulin sensitivity, hyperlipidemia and
hyperglycemia [75, 76]. Histological evaluation remains
the sole method of distinguishing steatosis from ad-
vanced forms of NAFLD, i.e. non-alcoholic steatohepati-
tis (NASH) and for the evaluation of hepatic fibrosis
[77]. Moreover, it has been reported that NAFLD/NASH
may progress to hepatocellular carcinoma (HCC) also in
the absence of apparent cirrhosis [77, 78].
Data generated in both, animal models and human

studies provide growing evidence that the progression of
NAFLD is also related to an altered intestinal micro-
biome and an impairment of the gut’s physical, chemical
and immunological barrier functions [79, 80]. Among
others changes in the enteric microbiome and an in-
creased intestinal permeability contribute to an overflow
of bacterial metabolites into the liver via the portal vein
driving the progression of NAFLD. Among the metabo-
lites of the intestinal microbiome are short-chain fatty
acids, major gut microbial fermentation products, and
ethanol. While short-chain fatty acids enhance intestinal
absorption by activating glucagon-like peptide-2, ethanol
causes triglyceride accumulation in hepatocytes via pro-
duction of reactive oxygen species and initiation of liver

Table 2 Summary of dose-dependent effects of silymarin on
serum markers and on tissue biochemical variables in rats
(derived data as highest percent change [67, 68])

ALT AST ALP Bilirubin

Paracetamol −48 % −80 % −39 % −62 %

CCl4 −45 % −46 % −47 % −31 %

TBARS GSH Nitrite/Nitrate Na + K+ ATPase

Paracetamol −70 % +100 % −33 % +123 %

CCl4 −50 % +164 % −28 % +158 %
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inflammation. This might provide a second hit to the
liver that had already accumulated fat [81–83]. Further-
more, the gut-derived bacterial products stimulate innate
immune receptors, namely Toll-like receptors (TLRs),
expressed on most hepatic cells, thus contributing to
acute and chronic liver diseases via immune activation,
i.e. cytokine production [84]. In a kind of circulus vitio-
sus, the inflammatory changes in the liver seem to con-
tribute to an increased intestinal permeability [85].
While metabolic adaptations occur to compensate for
the increased liver fat load, mitochondria eventually be-
come dysfunctional with increased generation of reactive
oxygen species and impaired electron transport chain ac-
tivity; both of which contribute to insulin resistance [86].
There are no silymarin specific data concerning its in-

testinal effects in NAFLD/NASH in animal experiments
or patients. However, several reports indicated different
effects on the intestine which are worthwhile mention-
ing. Thus, silymarin applied in clinically relevant doses
has been shown to have protective effects against trini-
trobenzene sulphonic acid (TNBS)-induced colitis in rats
[87], inhibition of epirubicin-induced gastrointestinal
mucositis in mice [88] and reduction of oxidative and in-
testinal damage induced by ischemia-reperfusion injuries
in rats [89]. It was also found to be effective against
cold-restraint stress induced gastric ulcers in rats at a
dose of 50 mg/kg per os [90].
In patients with ulcerative colitis in remission, 92 % of

the patients in the silymarin group remained in
complete remission with no flare-up after 6 months as
compared to 66 % in the placebo group (P < 0.01) [91].
Moreover, in hemochromatosis patients, homozygous
for the C282Y mutation in the HFE-associated gene, sili-
binin at a dose of 140 mg inhibited the iron absorption
by 43 % [91, 92].

Animal models
Hepatoprotective effects of silymarin have been re-
ported in different animal models of NAFLD/NASH
[93]. In one model, Otsuka Long-Evans Tokishima
Fatty (OLETF) rats were fed with a methionine-and

choline-deficient (MCD) diet [56, 94]. In this model a
diet mixed with silymarin 0.5 % w/w (approx.
390 mg/kg.day) caused a modest but significant im-
provement of the NAFLD activity score within
8 weeks, reduced histological signs of fibrosis and ex-
pression of profibrigenic factors [56, 95]. Favorable
results with a silymarin formulation were reported in
mice suffering from a streptozotocin plus high-fat diet
induced NASH. Steatosis score improved but the daily
milk thistle doses of 500 and 1000 mg/kg are hardly
predictive of a clinical setting [96]. Indirect confirm-
ation came from similar studies conducted with four
weeks silibinin (20 mg/kg i.p.) in db/db mice [95]. A
further similar protocol showed that silibinin decreased
insulin resistance in the HOMA-IR test, serum ALT and
markedly improved hepatic and myocardial damage [97].
Silibinin reduced isoprostanes, 8-deoxyguanosine and ni-
trites/nitrates and restored glutathione levels in the liver.

Clinical data
Patients suffering from NAFLD/NASH are hard to find
because of the symptoms like diabetes, insulin resistance
and /or obesity do not directly link to NAFLD/NASH.
Several groups have been interested in examining the
potential of silymarin in the treatment of NAFLD/
NASH. In three comparative trials silymarin has been
tested against placebo, in one against vitamin E, and in
one against pioglitazone and metformin (Summary in
Table 4, [98–102]). Furthermore, three Italian groups
conducted open trials applying silymarin combined with
other agents (see Additional file 3). The main interest of
latter lies in the criteria used to assess evolution in clin-
ical parameters; e.g. ultrasonographic score, the Steato-
Test, the Hepatic Steatosis Index (HSI) and the Lipid
Accumulation Product (LAP) index.
Hajani and coworkers compared the effect of vitamin

E 400 IU/d to patients receiving silymarin 70 mg for
three times a day over a period of 12 weeks [98]. AST/
ALT levels served as diagnostic parameters. The authors
concluded a potential for both substances to lower AST/
ALT levels. Two other placebo controlled trials used

Table 3 Clinical trials applying silymarin to patients with alcoholic liver disease

Study Silymarin Control Weighta WMD (fixed)

N Mean (SD) N Mean (SD) % 95 % CI

DiMario et al., 1981 [70] 15 25.40 (15.60) 14 50.60 (24.30) 3.38 −25.20 [−40.18, −10.22]

Salmi et al., 1982 [71] 47 38.20(15.99) 50 51.20(24.99) 11 −13.00 [−21.30, −4.70]

Feher et al., 1989 [72] 17 22.80(5.10) 19 31.30(4.50) 76.01 −8.50 [−11.66, −5.34]

Müzes et al., 1990 [73] 10 28.00(11.00) 20 52.00(13.00) 9.6 −24.00 [−32.88, −15.12]

Total (95 % CI) 89 103 100 −11.05 [−13.80, −8.29]
aWeighted mean differences of aspartate aminotransferase (AST) serum levels comparing control patients and patients receiving silymarin after the end
of treatment
Test for heterogeneity: Chi2 = 14.31, df = 3 (P = 0.003), I2 = 79.0 %
Test for overall effect: Z = 7.86 (P < 0.00001)
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AST/ALT levels and abdominal sonography to evaluate
the effect of silymarin in NAFLD. Although the number
of participants, doses and period of treatment were dif-
ferent, both trials revealed a tendency to reduce ALT/
AST levels in silymarin treated patients [99, 101]. In
comparison to pioglitazone and metformin, silymarin
also caused a more significant change in ALT/AST levels
[102]. However, the effect of silymarin on triglycerides,
fasting blood sugar, and insulin levels was rather weak
compared to pioglitazone treatment [102]. Thus, the ef-
fect of silymarin on insulin and other metabolic parame-
ters in the liver is an open question.
The quality of the scientific reporting in these studies

was limited. However, one may extract some relevant in-
formation: among the placebo controlled trials we may
retain two [100, 101] that showed significant differences
in favor of silymarin in the ALT and AST levels at the
end of the trials.
The data provide a rational for silymarin as a co-

medication in NAFLD/NASH. Due to its positive effects
on liver integrity silymarin might also improve the effect
of other therapies. For follow up clinical trials, one has
to keep in mind that the dosage of silymarin per day and
the observation period have to be taken under special
consideration. Referring to the pharmacokinetics of

silymarin the plasma levels in these studies might have
been too low to reach optimal therapeutic concentra-
tions. Nevertheless, the existing evidence merits further
studies with appropriate scientific standard.

Hepatic fibrosis and cirrhosis
In response to acute liver injury fibrosis arises as part of
an attempted wound-healing response that aims to
maintain organ structure and integrity [16]. However, in
chronic liver injury prolonged fibrosis leads to a progres-
sive tissue scaring process ending up in remodeling of
the liver tissue structure. Ultimately, hepatic fibrosis can
lead to liver cirrhosis and end stage liver disease. More-
over, cirrhosis is the major risk factor for HCC. A recent
assessment of liver cirrhosis mortality led to a global es-
timate of just over one million deaths in 2010 which was
approximately 2 % of all deaths [3, 103].
The pathophysiology of hepatic fibrosis involves the

generation of reactive oxygen species (ROS). Cyto-
chrome P450 2E1 is the main source of ROS in hepato-
cytes [104]. Activated hepatic stellate cells, portal
fibroblasts, and myofibroblasts of bone marrow origin
have been identified as major collagen-producing cells in
the injured liver. These cells are activated by redox-
sensitive intracellular pathways and fibrogenic cytokines

Table 4 Clinical trials with silymarin vs. placebo or other drugs in NAFLD/NASH

Author Hajiani et al. 2009 [98] Hashemi et al. 2009 [100] Hajiaghamo-hammadi
et al. 2012 [102]

Masoodi, et al. 2013 [99] Solhi et al. 2014 [101]

Diagnosis abdominal sonography
at entry & at the end
(NAFLD)

abdominal sonography or
liver biopsy (NAFLD or
NASH)

abdominal sonography
+ increased AST/ALT
serum levels

abdominal sonography +
increased AST/ALT serum
levels (NASH)

abdominal sonography
+ increased AST/ALT
serum levels

Type of Trial Open label,
Comparative

Comparative randomized Comparative
randomized

Comparative, double blind Comparative
randomized

Duration of
silymarin
application

12 weeks 24 weeks 8 weeks 12 weeks 8 weeks

Silymarin dose 70 mg tid 140 mg bid 140 mg/d [S] 140 mg bid 70 mg tid

Comparator vitamin E 400 IU d/12
w.

Placebo pioglitazone 15 mg/d
[P], metformin 500 mg/
d [M]

Placebo Placebo

N pts./Group 71 / 71 50 / 50 S 22 / P 22 / M 22 50 / 50 33 / 31

Outcomes
(Significances
End of TT)

AST Normal. 74.6 % vs.
56.3 % pts (P = 0.025)

AST < 40 in 62 % of cases
Silymarin vs 20 % placebo
(P < 0.001).

AST Normal. S 62 %, P
68 %, M 54 % (P < 0.1)

Mean AST 54.7 UI vs. 61.6;
(P < 0.2; CAVE diff. At
admission)

Mean AST 30 UI vs. 36
UI; (P = 0.04)

ALT Normal. 41 % vs.
45 % pts (N.S.)

ALT < 56 in 52 % of cases
Silymarin vs 18 % placebo
(P < 0.001)

ALT Normal. S 18 %, P
27 %, M 9 % (P > 0.1)

Mean ALT 68.54 UI vs.
73.3; (P < 0.5., CAVE diff. at
admission)

Mean ALT 38 UI vs. 52
UI (P = 0.03)

End-Pointsa Not Reported Not Reported b Not Reported c Not Reported Not Reported

Quality
(Simplified
Consort
Checklist)

5 / 10 4 / 10 4 / 10 4 / 10 5 / 10

a Hard End-Points: Death, Major Clinical Event, Biopsy or sonography
b No changes in Fasting plasma glucose, 2Hpp (2-Hour Post Prandial), Triglycerides, Total Cholesterol, HDL, LDL
c In all a decrease of Cholesterol. With pioglitazone and metformin decreased glycaemia
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such as TGF-β1, angiotensin II, and leptin. Reversibility
of advanced liver fibrosis in patients has been docu-
mented which has stimulated researchers to develop
antifibrotic drugs. However, prolonged liver injury will
cause irreversible crosslinking of extracellular matrix
leading to uncleavable collagen fibers. Antioxidants may
inhibit hepatic stellate cells (HSCs) activation, protecting
hepatocytes and attenuating experimental liver fibrosis
[105–107].

Experimental pharmacology
Animal models only incompletely recapitulate the com-
plexity of human liver disorders. Limiting factors are the
differences in time frames to develop a given pathology,
differences immune systems and differences in metabolic
rates [108]. However, experimental models can give im-
portant insights into the antifibrotic mechanisms of ac-
tion of a specific compound. In recent years there have
been several experimental publications describing an
antifibrotic activity of silymarin upon oral application al-
though, frequently, at doses above the therapeutic range.
Some of them are listed in Table 5 [109–113].

Clinical data
There have been no modern clinical trials conducted in
alcoholic cirrhosis; the trials dealing with this indication
have been described in extenso in other publications.
It seems worthwhile recalling that in the older alco-

holic cirrhosis trials reporting on mortality and liver-
related mortality (Table 6) there was a non-significant
reduction of overall mortality (16.1 % vs. 20.6 %) with an
odds ratio of 0.69 [95 % CI, 0.45, 1.07], but a significant
reduction of liver-related mortality (10.6 % vs. 17.6 %)
with an odds ratio of 0.52 [95 % CI, 0.32, 0.84]. Liver-
related mortality comprised hepatic failure and compli-
cations of portal hypertension such esophageal varices,
liver abscess, malignant neoplasm of liver and of intrahe-
patic bile duct [114]. In two trials the total incidence of
upper gastrointestinal bleedings showed a difference in
favor of the active silymarin treatment (4.6 with sily-
marin vs. 9.6 with placebo and 6.3 % vs. 13.5 % respect-
ively, P = 0.042). Hepatic cancer has not been
investigated systematically in any of these trials, but in

two of them it has been reported as cause of death, and/
or found at biopsy or at autopsy (silymarin = 3.1 %, pla-
cebo = 4.5 %, and silymarin = 3.4 %, placebo = 7.1 %, re-
spectively) [115, 116].
Similar conclusions concerning mortality were drawn

in an exhaustive meta-analysis of the clinical trials with
silymarin, including this indication, published some
years ago by the Cochrane group [117].

Other liver injuries
Intoxication with Amanita phalloides
Intravenous silibinin continues to be part of the standard
treatment in case of intoxication with A. phalloides
[118]. However, the clinical efficacy of any modality of
treatment is difficult to demonstrate since randomized,
controlled clinical trials have not been reported. The
clinical evidence supporting the use of i.v. silibinin in
case of intoxication with A. phalloides has been reviewed
[119]. One further publication reported on silymarin ap-
plication to a series of 10 Australian patients with prob-
able poisoning and two patients with possible poisoning,
respectively. Despite treatment according to the standard
regime with i.v. silibinin mortality rate was still high
[120]. Furthermore, two cases of successfully treated in-
toxications with A. ocreata have been reported from the
Northeastern USA [121].

Neonatal jaundice
Silymarin has also been applied in the context of the
management of hyperbilirubinemia in neonatal jaun-
dice. In a comparative study with 170 neonates the
mean duration of phototherapy was found to be sig-
nificantly reduced from 5.3 ± 0.82 days in the control
group to 4.2 ± 0.76 (p = 0.001) days in the silymarin-
treated group (3.75 mg/kg of silymarin twice daily);
increased ALT and AST serum levels were also im-
proved in the silymarin-treated group (p = 0.001)
[122].

Use as adjunctive to in chemotherapy
In a study reported in 2010, 50 children with acute
lymphocytic leukemia (ALL) were enrolled in a random-
ized study testing placebo vs. silymarin for treatment of

Table 5 Experimental models for anti-fibrotic effects of Silybum marianum

Model Silymarin doses Effect

CCl4 in transgenic
mice

200 mg/kg Ex vivo reduction of the genes Cox6a2, 7a1, Cox8b [113]

CCl4 50 mg/kg Anti-inflammatory effect, HSC activation, mast cell stabilization, TGFβ secretion[109]

Thioacetamid 150 mg/kg Body weight ↓, serum cholesterol↓, TG↓, liver size ↑, ALT/AST↓,[110]

CCl4 100 mg/kg i.p. (non therapeutic
route)

Reduction of hepatic collagen content 18 %, Reduction hepatic fibrosis score 47 %
[111]

CCl4 20 or 100 mg/kg Reduction of inflammatory and fibrotic effects [131]
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chemotherapy-associated hepatotoxicity [123]. No sig-
nificant differences in the frequency of side effects or in-
fections were observed between groups. With regard to
the degree of liver damage there was no significant
change in AST, ALT, or total bilirubin levels on day 28.
However, on day 56, the milk thistle group (5.1 mg/kg/
day) had significantly lower AST serum levels (p = 0.04).
In addition, a retrospective analysis of patients with post
chemotherapy mild temporary hepatic failure (PC-
MTHF) showed a faster recovery under silymarin treat-
ment compared to those under standard management
[124].

Iron overload
Genetic or transfusion-associated iron overload is a
common cause of chronic liver injury, fibrosis or even
cirrhosis. As standard treatments depletion of iron stores
by phlebotomy and in some cases application of iron
chelators are considered. Earlier studies observed an
additional, positive effect (e.g. reduced serum iron and
serum ferritin in 3 out of 4 trials) for silymarin [125,
126]. In addition, the role of silymarin in a combined
regimen with deferasirox or deferiprone in the treatment
of the iron overload in Beta-Thalassemia is currently
under investigation in several clinical trials.

Conclusion
Chronic toxicity studies in rodents have confirmed that
silymarin has a very low toxicity, and at very high doses
it rather reduced than increased the incidence of some
spontaneous neoplasias in rodents. These data strongly
support the large therapeutic index of silymarin and bol-
ster its history of safe medication.
Pharmacokinetic studies showed that (i) the type of

hepatic pathology has a major impact on the kinetics
of silymarin, (ii) doses above 700 mg tid may reach
much higher blood levels than predicted from linear
dose/blood levels at lower doses and (iii) the short
half-life of silymarin indicates that at least 3 daily

intakes are needed to warrant sustained effective
blood levels. No clinically relevant interactions be-
tween silymarin and other drugs have been identified
so far.
Of the multitude of pharmacological effects attrib-

uted to silymarin in recent years, most can be attrib-
uted to its antioxidative and membrane-stabilizing
properties. Available clinical studies related to the ap-
plication of silymarin in toxic hepatological disorders
have limitations. Still, the favorable risk/benefit ratio
justifies continuing the use of silymarin in these indi-
cations. Nevertheless, further studies addressing the
optimization of dosing schedules, pharmaceutical drug
formulations, and patient selection are needed.
In spite of promising experimental data there have

been no recent clinical studies in alcoholic liver disease
(excluding cirrhosis). However, older trials reported re-
duced AST serum levels in response to silymarin treat-
ment. It seems worthwhile recalling that in alcoholic
cirrhosis trials there was no significant reduction of
overall mortality and of liver-related mortality.
In the rapidly evolving indication NAFLD/NASH,

animal and human studies show that silymarin may
reach higher blood levels compared to healthy con-
trols. Furthermore, it may have beneficial effects on
the intestine in addition to liver-protecting effects.
Several comparative trials have shown some benefits
referring to AST and ALT levels in NAFLD / NASH
patients. However, most of these studies had meth-
odological limitations.
Quo vadis silymarin? As pointed out, further clinical

studies of higher scientific quality analyzing long term
application and clinical outcomes are needed to support
evidence for the use of silymarin in different types of
chronic liver disease. These studies also need to pay in-
creased attention to nutritional and life-style covariates
like smoking [127], coffee consumption [128], physical
activity [129] particularly, in the context of NAFLD. Fur-
thermore, available experimental and clinical studies

Table 6 Mortality as relative risk (RR) in placebo controlled cirrhosis trials

Study Duration Dose Silymarin Control (Total mortality) Liver Related Mortality

(Weight) (RR (fixed)) Weight RR (fixed)

(Mo.) mg/day (nt) nL/N (nt) nL/N (%) (95 % CI) % 95 % CI

Ferenci, 1989 [115] 24 420 (28) 18/87 (39) 31/83 (61.79) (0.68 [0.47, 1.00]) 57.29 0.55 [0.34, 0.91]

Trinchet,1989 [132] 3 420 (1) 01 / 57 (3) 03 / 59 (4.56) (0.35 [0.04, 3.22]) 5.32 0.35 [0.04, 3.22]

Bunout,1992 [133] 15 280 (5) 04 / 34 (5) 05 / 37 (7.41) (1.09 [0.34, 3.43]) 8.65 0.87 [0.25, 2.98]

Pares,1998 [116] 24 450 (16) 10/103 (15) 14/97 (23.91) (1.00 [0.53, 1.92]) 26.04 0.67 [0.31, 1.44]

Lucena, 2002 [134] 6 450 (0) 0/30 (1) 1 / 30 (2.32) (0.33 [0.01, 7.87]) 2.71 0.33 [0.01, 7.87]

Total (95 % CI) (50) 33/311 (63) 54/306 (100) (0.77 [0.56, 1.05]) 100 0.60 [0.40, 0.88]

Total mortality: Test for heterogeneity: Chi2 = 2.12, df = 4 (P = 0.71), I2 = 0 %; Test for overall effect: Z = 1.65 (P = 0.10). Liver Related Mortality: Test for
heterogeneity: Chi2 = 0.90, df = 4 (P = 0.92), I2 = 0 %; Test for overall effect: Z = 2.64 (P = 0.008)
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teach us that future clinical trials should focus on long-
term observations because with silymarin’s effects are
unlikely to be acute and dramatic but rather progressive
over time.
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