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Abstract

predicted as majorly modulated pathway.

Tinospora cordifolia

Background: Tinospora cordifolia is used traditionally for the treatment of diabetes and is used in various
formulations. Scientific evidence is also available for its anti-diabetic potency under various animal models.
However, the probable molecular mechanism of Tinospora cordifolia in the treatment of diabetes has not been
illuminated yet. Hence, the present study dealt to elucidate the probable molecular mechanism of anti-diabetic
effect of Tinospora cordifolia using network pharmacology approach.

Methods: The structural information of bioactive phytoconstituents was retrieved from different open source
databases. Compounds were then predicted for their hits with the probable targets involved in the diabetes
mellitus. Phytoconstituents were also predicted for their druglikeness score, probable side effects, and ADMET
profile. The modulated protein pathways were identified by using the Kyoto Encyclopedia of Genes and Genomes
pathway analysis. The interaction between the compounds, proteins, and pathways was interpreted based on the
edge count. The docking study was performed using Autodock4.0.

Results: Nine phytoconstituents from Tinospora cordifolia were identified to modulate the pathogenic protein
molecules involved in diabetes mellitus. Among them, tembetarine scored highest druglikeness hit and had the
maximum interaction with proteins involved in diabetes. Further, neuroactive ligand-receptor interaction was

Conclusion: The current study identified an important antidiabetic constituent, tembetarine which modulated the
majority of diabetic proteins majorly modulating neuroactive ligand-receptor interaction.

Keywords: Diabetes mellitus, Network pharmacology, Neuroactive ligand-receptor interaction, Tembetarine,

Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disorder
due to insulin insensitivity/insulin resistance; modern
pharmacotherapy utilizes synthetic oral hypoglycaemic
agents [1]. Although these molecules are effective in the
management of elevated blood glucose level, they are not
free from numerous side effects like genital mycosis, pan-
creatitis, ketoacidosis, nausea, vomiting, fractures, and
neuropathy risk. GLP-1 agonists (p), like liraglutide, dula-
glutide, and exenatide are contraindicated in multiple
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endocrine neoplasia (MEN) type 2 due to high risk of C
cell tumor in thyroid and pancreatitis [2]. Further, T2DM
is a polygenic condition; includes the collaborative task of
multifarious pathogenic genes forming a labyrinthine dis-
ease network within the biological system [3]. Hence,
blocking the task of one protein could trigger another
pathway to earn the same response within the disease net-
work. This could be due to the collaborative function of
multiple genes in a synergistic pattern to achieve a par-
ticular response.

The current synthetic oral hypoglycaemic agents target
a specific protein [2]; however, it is to be understood
that a single drug can regulate multiple proteins as a
“single master key unlocks multiple locks” [4], which
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could be dose-dependent i.e. minimization of dose may
not achieve the desired pharmacological response and a
higher dose may lead to adverse effects. Hence, for the
management of complex disease like diabetes, it may not
be advisable to target a single protein molecule; instead,
target the multiple proteins with a low dose of multiple
compounds and achieve the synergistic effect. Herbal
medicines are reported to manage the diabetic condition
followed by its symptomatic relief, also prevent the prob-
able complications; via the regeneration of beta-cells,
minimization of insulin resistance [5] and lowering the
elevated blood glucose level by restoring the liver glyco-
gen level [6]. Multiple herbal medicines and their prepa-
rations have been reported to possess the anti-diabetic
activity [7]. Further, isolated compounds from traditional
folk medicines have also been identified to possess the
anti-diabetic activity [8]. However, folk medicine lacks
sufficient scientific data in the management of complex
diseases like diabetes; be short of evidence in phytocon-
stituents composition, mechanism of action and
ADMET profile.

Tinospora cordifolia, commonly identified as heart-
leaved moonseed, Guduchi, belongs to the family Menis-
permaceae is recorded as “Guduchi (St)” in the Ayurvedic
Pharmacopoeia of India; utilized in the management of
“Prameha” (an ayurvedic term that explains clinical condi-
tions involved in obesity, prediabetes, diabetes mellitus,
and metabolic syndrome). Further, Ayurvedic Pharmaco-
peia of India records terpenoids and alkaloids as a major
phytoconstituents in the management of Jvara (Fever),
Kustha (Skin disorders), Pandu (Anaemia), Vatarakta
(Gout) and Kamala (Jaundice) [9]. Scientific reports have
been made for T. cordifolia as an anti-diabetic agent in
various experimental animal models [10, 11]. However,
the probable mechanism of T. cordifolia in the manage-
ment of diabetes has not been illuminated yet. Hence, the
present study aims to identify the potential phytoconstitu-
ents from T. cordifolia, identify their targets involved in
diabetes mellitus (DM) and report the probable mechan-
ism in its management via the network pharmacology
approach.

Methods

Mining of phytoconstituents and proteins involved in
diabetes

Phytoconstituents of T. cordifolia were mined from the
available literature; scientific journals and traditional me-
dicinal books. The database was constructed for the phy-
toconstituents, their types, SMILES and PubChem CID.
The duplication of phytoconstituents was eliminated
during the construction of the database. The canonical
SMILES and PubChem CID of each phytoconstituents
were retrieved from the PubChem Database [12].
SMILES were queried for the prediction of the target in
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BindingDB [13] at the percentage similarity of 70% with
known ligand molecules. The proteins involved in dia-
betes were identified with reference to the known targets
of diabetes reported in Therapeutic Target Database
(TTD) [14]. Gene ID of each protein molecule identified
as the target of diabetes mellitus was retrieved from the
UniProt [15].

Druglikeness prediction and ADMET profile
Phytoconstituents were predicted for the druglikeness
score via the utilization of “Lipinski’s rule of five” model
by using MolSoft (http://www.molsoft.com/). Similarly,
admetSAR2.0 [16] was used to predict ADMET profile
of individual phytoconstituents.

Prediction of side effects

ADVERpred [17] was used to predict the probable side ef-
fects by querying the SMILES of each phytoconstituent.
The mol charge of the phytoconstituents was removed (if
present) during the prediction of side effects. The side ef-
fects were considered if the probable activity (Pa) is higher
than probable inactivity (Pi) and Pa value greater than 0.7.

Pathway and network analysis

Set of proteins involved in DM was queried in STRING
[18] and gene enrichment analysis was performed to iden-
tify the pathways that are modulated by the phytoconstitu-
ents. Further, the KEGG pathway(https://www.genome.jp/
kegg/) analysis was performed to identify the pathways in-
volved in DM. Cytoscape [19] 3.5.1 was used to construct
the network between phytoconstituents, protein mole-
cules, and identified pathways. The color and node size
scale were used to interpret the whole network which is
based on the number of edges (edge count). The node
with the maximum number of edge count was indicated
with colossal node.

Docking studies

Three-dimensional structure of tembetarine was re-
trieved from PubChem database and minimized using
MMFF94 forcefield [20]. The target molecule beta 1 ad-
renergic receptor was retrieved from the RCSB (https://
www.rcsb.org/) database. Discovery Studio [21] was used
to remove water molecules and heteroatoms from the
protein molecule. Similarly, SWISS-MODEL [22] was
used for the homology modeling of beta 1 adrenergic re-
ceptor by using accession number: NP_000675.1 as a
query sequence and PDB ID: 4BVN as a template. Auto-
Dock4.0 [23] was used to predict the binding affinity of
tembetarine with beta 1 adrenergic receptor. After dock-
ing, the pose scoring the lowest binding energy was
chosen to visualize the ligand-protein interaction.
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Results

Mining of phytoconstituents and proteins involved in
diabetes

Thirty-one different phytoconstituents were identified in
Tinospora cordifolia from different databases and other
open-source records; nine of them were predicted to
modulate the diabetic protein molecules (Table 1).
These phytoconstituents were identified as alkaloids, ter-
penes, and steroids. Similarly, the majority of the tar-
geted diabetic protein molecules were surface proteins
and enzymes (Fig. 1).

Predictive side effects, ADMET profile, and druglikeness
of compounds

Except for N-E-feruloyl tyramine, all the eight phytocon-
stituents were predicted for their probable side effects.
The probability of side effects for arrhythmia, myocardial
infarction, and nephrotoxicity of predicted compounds
is shown in Fig. 2. Phytochemicals were predicted for
their probability for absorptivity, blood-brain barrier per-
meability, isoenzyme inhibitory activity, mutagenicity,
plasma protein binding affinity, and fish aquatic toxicity.
The ADMET profile of each phytoconstituent is repre-
sented in heat map (Fig. 3). Similarly, all nine phytocon-
stituents were predicted for their druglikeness score; the
highest was scored by tembetarine (Table 2).

Pathway and network analysis

Gene set enrichment analysis identified thirteen different
pathways; modulated by proteins involved in the DM. The
peer interpretation of protein interaction under the KEGG
pathway analysis identified four different pathways which
are directly linked in the pathogenesis of DM. Among
them, neuroactive ligand-receptor interaction was identi-
fied to score the highest count of gene sets with the lowest
false discovery rate (Table 3). Sixty-seven edges were

Table 1 Types of compounds and their targets

Page 3 of 9

identified in the drug-protein-pathway network in which
fifty-two were target-phytoconstituents interactions and
fifteen were target-pathway interaction. The constructed
network included thirty-four nodes representing four
pathways, twenty-one targets and nine phytoconstituents.
Tembetarine scored highest edge count; interaction was
found with twelve protein molecules ie. ACACB,
ADRAI1D, ADRA2C, ADRB1, DPP4, DRDI1, DRDIB,
ESR1, HTR2A, HTR2C, KCNA4, and PARPI. Similarly,
neuroactive ligand-receptor interaction modulated the
highest number of protein molecules i.e. DRD5, ADRBI,
DRD1, CNR2, ADRA2C, NR3C1, HTR2A, ADRA1D, and
HTR2C. Tembetarine majorly modulated proteins which
are involved in neuroactive ligand-receptor interaction
pathway i.e. ADRA1D, ADRA2C, ADRB1, DRD1, HTR2A,
and HTR2C (Fig. 4). Further, ADRA1D, ADRA2C,
ADRBI, CNR2, DRD1, HTR2A, HTR2C, and NR3C1 pro-
teins from neuroactive ligand-receptor interaction path-
way were also modulated by other phytoconstituents to
show the synergistic effect for anti-diabetic activity.

Docking studies

The binding affinity and inhibitory constant of tembetar-
ine with beta 1 adrenergic receptor was found to be -
6.25 kcal/mol and 36.45 uM respectively. Two hydrogen
bond interactions were found in ligand-protein complex
i.e. ASN:94 and THR:93 with “H” atom (hydroxyl group
attached to carbon 19) and “O” atom (hydroxyl group
attached to carbon 4) respectively (Fig. 5).

Discussion

Exploration of folk medicines for the management of
complex diseases like diabetes via the utilization of net-
work pharmacology is a well-accepted approach. Many
attempts have been made to understand the molecular
mechanisms of folk medicines in the management of the

Targeted Proteins

Compounds Compound Type PubChem CID

Tembetarine Benzyl-iso-quinoline alkaloid 167718

Magnoflorine Aporphine alkaloid 73337

Tinocordiside Cadinane sesquiterpene glycoside 177384

Tinocordifolioside Daucane-type sesquiterpene 100926541
glucoside

Makisterone A Steroid 12312690

Tetrahydropalmatine Iso-quinoline alkaloid 72301

N-E-feruloyl Alkaloid 5280537

tyramine

B-sitosterol Steroid 222284

y- sitosterol Steroid 457801

HTR2AHTR2C ACACB,ADRB1,ADRA2C, ADRATD,ESR1,DPP4,DRD1,DRD1B,
PARP1,KCNA4

HTR2AHTR2C, ADRATD,ADRA2C,ADRB1,DRD1,DRD1B
HSD11B2,NR3C1
BACE1,ESR1,HSD11B2HTR2AHTR2C,NR3C1,NR3C2

BACE1,ESR1,HSD11B2,HTR2AHTR2C,NR3C1,NR3C2

ACACB,ADRATD,ADRA2C,ADRB1,DPP4,DRD1,ESRT,HTR2AHTR2CKCNA4,
PARP1

CNR2

ESRT, PTPN1
ESRT, PTPN1
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multifaceted disease by using network pharmacology molecular mechanism of T. cordifolia in the manage-
[24-26]. The utilization of T. cordifolia has been demon- ment of diabetes has not been illuminated clearly.
strated for the management of DM [10]. However, the Hence, the current study utilizes the network
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Table 2 Druglikeness property of phytoconstituents

Phytoconstituents Molecular MW NHBA NHBD MolLogP MolLogS DLS

formula Log (moles/L) mg/L

Tembetarine CyoH26NO4 344.19 4 2 3.09 -1.92 4120.72 141
Magnoflorine Co0H24NO, 34217 4 2 2.77 -1.82 5225.20 0.8

Tinocordiside C51H3,0; 396.21 7 4 098 —342 151.88 047
Tinocordifolioside Co1H3.0g 412.21 8 4 0.08 —244 1511.36 0.23
Makisterone A CogHu607 494.32 7 [§ 267 -2.53 1442.59 1.38
Tetrahydropalmatine C51H5NO, 355.18 5 0 243 —4.14 26.00 1.24
N-E-feruloy! tyramine CigH10NO4 31313 4 3 3.29 -3.85 4473 0.24
B-sitosterol CooHs500 414.39 1 1 948 —7.51 0.01 0.88
y- sitosterol CooHs500 414.39 1 1 948 —7.51 0.01 0.88

MW Molecular weight, NHBA Number of Hydrogen Bond Acceptor, NHBD Number of Hydrogen Bond Donor, DLS Druglikeness Score

pharmacology approach to understand the probable
molecular mechanisms of 7. cordifolia in the manage-
ment of DM.

We constructed the network interaction between
phytoconstituents, their targets, and probable path-
ways. The result reflects terpenes, steroids, and alka-
loids as a potential phytoconstituents to interact with
multiple protein molecules involved in the pathogen-
esis of DM. Among them, tembetarine, a benzyl-iso-
quinoline alkaloid possesses the potential role in the
pharmacotherapy of DM by targeting the numerous
protein molecules within the network. Ayurvedic
Pharmacopoeia of India records terpenoids and alka-
loids as major phytoconstituents in 7. cordifolia [9];
were involved to modulate the multiple pathogenic
protein molecules which are associated with DM.

One of the clinical trials of T. cordifolia reports
the alkaloids as a potential phytoconstituents in the
management of diabetes in T2DM patients [27]. Fur-
ther, the reports have been found to explain the
beneficial role of alkaloids in the management of dia-
betes and associated complications [28]. This could
be due to the prime role of tembetarine with other
phytoconstituents by targeting the numerous protein
molecules involved in the pathogenesis of DM to
work in a synergistic way as demonstrated in the
current findings.

Targeting dopamine and serotonin receptors are iden-
tified as one of the approaches in the pharmacotherapy
of DM [29, 30]. The present study predicts tembetarine
for its maximum druglikeness score (Table 2) and prob-
ability to cross the blood-brain barrier (Fig. 3). This
suggests the probability of tembetarine to act on the
dopamine and serotonin receptors and modulate the
glucose homeostasis via the participation in noradren-
aline output, appetite control and perpetuating biological
clock which directly responds to the pancreatic beta-cell
secretion.

The control in the appetite is also one of the import-
ant approaches in diabetes management [31]. The
current study identifies tembetarine and tetrahydropal-
mate to inhibit DPP4 (Table 1) and increase the level of
incretins suggesting their important role in the appetite
control and participation in glucose homeostasis. Fur-
ther, T. cordifolia is reported for its protective effect
against insulin resistance and oxidative stress [32] and
contribute in improving glucose tolerance in diabetic
rats [33]; demonstrated in the current study by modulat-
ing ESR1 and PTPN1 proteins by steroids.

KEGG pathway analysis indicated the important role
of T. cordifolia in the management of diabetes by modu-
lating four major pathways ie. neuroactive ligand-
receptor interaction, aldosterone-regulated sodium re-
absorption, insulin resistance, and insulin signaling

Table 3 Gene set Enrichment analysis of proteins involved in diabetes mellitus

Pathway  Description Count In Gene  False Discovery ~ Genes
Set Rate
hsa04080 Neuroactive ligand-receptor 9 463E-11 DRD5, ADRBT, DRD1, CNR2, ADRA2C, NR3C1, HTR2A,
interaction ADRA1D, HTR2C
hsa04960 Aldosterone-regulated sodium 2 0.0054 HSD11B2, NR3C2
reabsorption
hsa04931 Insulin resistance 2 0.0231 PTPN1, ACACB
hsa04910 Insulin signaling pathway 2 0.0267 PTPN1, ACACB
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pathway. KEGG pathway records neuroactive ligand-
receptor interaction as one of the major pathways for
leptin deficiency (KEGG Entry: H02059), leptin receptor
deficiency (KEGG Entry: H02060), and genetic obesity
(KEGG Entry: H02106, [34]). Leptin deficiency is one of
the major reasons due to the uncontrolled diabetic con-
dition [35] leading to unregulated appetite, thermo-
genesis, elevated hepatic gluconeogenesis and lowered
glucose uptake expounding the shape of insulin resist-
ance [36]. Aldosterone-regulated sodium reabsorption is
associated with insulin-resistant diabetes mellitus with
acanthosis nigricans (KEGG Entry: H01228) [37]. In the
current study, two genes i.e. PTPN1 and ACACB were
identified to be regulated which are involved in the insu-
lin resistance/signaling. PTPN1 is identified to eradicate
phosphate groups from phosphorylated tyrosine residues
and is involved in T2DM and insulin resistance [38].
ACACSB inhibits glucose and fatty acid oxidation and en-
hances the storage of fat. It also regulates the oxidation
of fatty acid in mitochondria via the inhibition of carni-
tine palmitoyltransferase 1; proves imperative character
in diabetic and obese conditions [39].

The in vitro and in vivo studies reflect the potency of al-
kaloids and steroids from T. cordifolia play a crucial role
in the management of diabetes [40]. The previous report
suggests the insulin sensitivity efficacy of T. cordifolia [41,
42] which could be due to the interaction of /y-sitosterol
with PTPN1 and ACACB (Table 1). Further, alkaloid rich
fraction has been reported to minimize the elevated blood
glucose level via the insulin mimicking and insulin-
releasing effect [40]. The current study identifies modula-
tion of neuroactive ligand-receptor interaction (KEGG
Entry: hsa04080) via the majority of the phytoconstituents
including tembetarine; modulates secretins e.g. glucagon
and glucagon-like peptide (GLP) which are well-
acknowledged for insulin sensitization. This suggests alka-
loids from T. cordifolia modulate the insulin sensitivity via
neuroactive ligand-receptor interaction.

Insulin resistance and T2DM are the major contribut-
ing factors in the cardiomyopathy [43] which is one of
the risk factors in diabetic complications. Beta 1 adren-
ergic receptor is reported to activate phospholamban in
myocytes and eNOS in myocytes [44]; phospholamban
decreases muscle relaxation and cardiac contractility
[45]; decreases heart rate and stroke volume respectively
and eNOS maintains vascular tone [46]. The role of neu-
roactive ligand-receptor interaction in the cardioprotec-
tion has been reported [47]. In the current finding, three
different phytoconstituents i.e. tembetarine, tetrahydro-
palmatine, and magnoflorine were identified to interact
with ADRBI1; one of the protein molecules from neuro-
active ligand-receptor interaction. Hence, the reported
cardioprotective effects of T. cordifolia [48, 49] could be
due to the interaction with ADRB1 and neuroactive
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ligand-receptor interaction. This finding is further sup-
ported by the mining of protein targets which identified
ADRBI as a potential target for tembetarine.

In conclusion, we identified tembetarine as one of the
major alkaloids to interact with the maximum number of
protein molecules that are involved in the pathogenesis of
DM. Further, neuroactive ligand-receptor interaction was
identified as a major pathway in the management of dia-
betes and cardio-protection which is one of the major
risks in insulin resistance and diabetes. However, the
current findings are only based on processor simulations
which need to be demonstrated via wet-lab protocols.
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