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Abstract

Background: Diosgenin is an isospirostane derivative, which is a steroidal sapogenin and the product of acids or
enzymes hydrolysis process of dioscin and protodioscin. Galactomannans are heteropolysaccharides composed of
D-mannose and D-galactose, which are major sources of locust bean, guar, tara and fenugreek.

Methods: Literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web
of knowledge and Google Scholar.

Results: Four major sources of seed galactomannans are locust bean (Ceratonia siliqua), guar (Cyamopsis
tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (T.foenum-graecum). Diosgenin has effect on
immune system, lipid system, inflammatory and reproductive systems, caner, metabolic process, blood system,
blood glucose and calcium regulation. The most important pharmacological benefits of galactomannan are
antidiabetic, antioxidant, anticancer, anticholinesterase, antiviral activities, and appropriate for dengue virus and
gastric diseases.

Conclusions: Considering the importance of diosgenin and galactomannans, the obtained findings suggest
potential of diosgenin and galactomannans as natural products in pharmaceutical industries.
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Introduction
Natural products from herbal medicines, particularly
traditional Iranian and Chinese medicines have found to
be effective for many diseases [1–4]. Medicinal plants
and traditional herbal remedies have been gaining con-
siderable attention in these years because of accessibility,
affordability, their safety, promising efficacy and being
eco-friendly [5–9]. Galactomannans are heterogeneous
polysaccharides comprising a β-(1→ 4) d-mannose
backbone branched with α-(1→ 6) linked d-galactose
monomeric units. Galactomannans,s nature defined by
the parameters, such as intrinsic viscosity, M/G ratio,
fine structure and average molecular weight, and it is
considered as the natural polysaccharides which are used
as the stabilizer, emulsifier and thickener in the food in-
dustries. Galactomannans belongs to a family of seed
gums and present polymers of galactose and mannose.
Diosgenin, a triterpenoid having two pentacyclic rings
especially found in fenugreek (Trigonellafoenum-graecum
L. - Leguminosae) and roots of wild yam (Dioscoreavillosa
L. - Dioscoreaceae), and considered as an antihyperglyce-
mic, antidiabetes, antihypertriacylglycerolemia, and anti-
hypercholesterolemic agent, especially in traditional
Chinese medicine. It is biosynthesized from cholesterol via
the isoprenoid pathway which involves several steps but
starts with acetyl CoA. Galactomannans and Diosgenins
are main bioactive components of medicinal plants such
as fenugreek. The goal of this manuscript is survey on the
most important health benefits and pharmaceutical advan-
tages of galactomannan and diosgenin with considering
traditional knowledge of natural products.

Galactomannans
Galactomannans are naturally occurring biocompatible
and biodegradable nonionic polysaccharides consisted of
mannose and galactose residues, which are commercially
isolated from the seeds of guar, carob, fenugreek and
tara plants [10–15]. Galactomannans are under investi-
gation for the design of various drug delivery carriers
such as matrix tablets, microparticles, nanoparticles,
polymeric micelles, hydrogels and different pharmaceut-
ical excipients [16, 17], like galactomannan extracted
from Trigonella persica (Boiss.) E. Small (Leguminosae)
endosperm which is useful in the medicine and pharma-
ceutical industry [18]. In green and immature seed of
Gleditsia sinensis Lam. (Leguminosae) tree, galactoman-
nan was substituted to a great extent with a mannose to
galactose (M/G) ration of 2.4 from crude polysaccharides
[19]. The seed galactomannan of Bauhinia monandra Kurz
(Leguminosae), Bauhinia vahlii Wight & Arn. (Legumino-
sae), Citrullus colocynthis (L.) Schrad. (Cucurbitaceae),
Delonix elata Gamble (Leguminosae), Leucaena leucoce-
phala (Lam.) de Wit (Leguminosae), and Peltophorum pter-
ocarpum (DC.) K. Heyne (Leguminosae) could be explored

as an effective alternative to commercial galactomannans
for industrial purposes [20–24]. Galactomannans from
Prosopis affinis Spreng (Leguminosae), seeds has shown
molecular weight distribution and intrinsic viscosity similar
to those of commercial gums [25]. Galactomannan from
fenugreek attributes depicted a very food candidacy for
industrial application [26, 27]. Liu et al. [28] reported that
degradation of galactose was slightly easier than that of
mannose. Galactomannans of G.sinensis, fenugreek and
guar galactomannans, showed a rod-like and fibrous fila-
ment network structure [29]. Galactomannans fraction
from Gleditsia triacanthos L. (Leguminosae) seeds could
become a suitable alternative to be used as a food texture
modifier for starch-based products [30]. Coelho et al. [31]
showed that galactomannan films have a large potential
application into the engineering area and food science, like
G. triacanthos extract which has shown to have excellent
filmogenic properties [32, 33]. Galactomannan from Sesba-
nia cannabina (Retz.) Pers. (Leguminosae) was applied for
fabricate high-strength film [34]. Retama raetam (Forssk.)
Webb & Berthel (Fabaceae) galactomannan can reduce the
glycemic index of starchy foods [35]. Galactomannan pre-
treatment constitutes a novel and promising therapy to de-
crease local and remote damage triggered by intestinal
ischemia-reperfusion injury [36]. Chemical structure of
galactomannan has shown in Fig. 1. The major pharmaco-
logical effects of galactomanna have been shown in Table 1.

Diosgenin
Diosgenin (25R-spirost-5-en-3β-ol) (Fig. 2) is an import-
ant steroid-based compound obtained from the secondary
metabolic products of plant species [45, 46], which has
been proven as an important bioactive drug component
due to its anti-cancer activity, anti-cardioprotective activ-
ity, anti-diabetic effects, anti-microbial effects, anti-
thrombotic effects, anti-inflammatory and osteoarthritis
protective activities [47–52]. Diosgenin mainly exists in
plant cells in the form of the ligand of saponin, with its C3

Fig. 1 Chemical structure of galactomannan
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and C26 linked to sugar chains via saponin bonds [53].
Diosgenin naturally exists in tubers of many Dioscorea or
Costus genus plants and seeds of T.foenum-graecum [54],
but Discoreanipponica Makino (Dioscoreaceae), a tuber-
ous herbaceous perennial liana, is widely used as materials
for diosgenin production in industries [55]. It is also found
in Smilax china L. (Smilacaceae), Heterosmilax japonica
Kunth (Smilacaceae), Solanumincanum L. (Solanaceae),
Solanum virginianum L. (Solanaceae), Cheilocostusspecio-
sus (J.Koenig) C.D.Specht (Costaceae) and T. foenum grae-
cum. On the basis in vitro and in vivo studies, diosgenin
and its analogs have roles in modulating important molecu-
lar targets and signaling pathways such as Phosphoinositide
3-kinase/Protein Kinase B/Mechanistic Target of Rapamycin
(PI3K/AKT/mTOR), Janus Kinases/Signal Transducer and
Activator of Transcription Proteins (JAK/STAT), Factor
Nuclear Kappa B (NF-κB), and Mitogen-Activated Protein
Kinase (MAPK), e.g., which have vital role in the develop-
ment of various diseases [56]. It is a natural phytochemical
which can mitigate diabetes induced oxidative stress and
dyslipidemia which is important in cardio-metabolic risks by
modulating the Peroxisome proliferator-activated receptor
(PPARs) [57]. Diosgenin induces apoptosis inInsulin-like
Growth Factor-1(IGF-1)-treated thyrocytes through two

caspase pathways, namely inhibits FLICE inhibitory proteins
(FLIP), and activates Caspase-8 in FAS related-pathway and
increases Reactive Oxygen Species (ROS), regulates the
ration of BCL2 Associated X/B-cell lymphoma 2 (BAX/
BCL-2) in mitochondrial pathway [58]. Diosgenin amelio-
rated endothelial dysfunction through IκB kinase β/IR
substrate 1-dependent manner (IKKβ/IRS-1), and improved
endothelial insulin signaling under inflammatory conditions
which shows its potential application in the treatment for
atherosclerosis [59]. Diosgenin has the potential to show
high glucose-induced renal proximal tubular fibrosis party
by modulating Epithelial-to-Mesenchymal Transition
(EMT) pathway [60]. Treatment by diosgenin may provide
significant improvement toward preserving hemodynamic
changes and alleviating oxidative stress, inflammatory and
apoptotic markers induced by monocrotaline in rats and it
also prevent monocrotaline-induced changes in nitric oxide
production, endothelial and inducible nitric oxide synthase
protein expression and histological analysis which shows its
importance in pulmonary hypertension [61]. Diosgenin re-
stored moderately decreased sperm motility in D-galactose-
treated wistar males and it can be a choice for treatment of
mild age-related reproductive dysfunctions [62]. It also
shows antinociceptive potential in diabetic rats through low-
ering oxidative stress and inflammation and improving anti-
oxidant defense system [63]. Zolfaghari et al. [64] reported
that the induction of hairy roots considerably increased the
production of diosgenin as compared with the plant itself,
and they have found that by converting dioscin to diosgenin,
the non-specific beta-glucosidase activity of bacterial genes
may lead to higher accumulation of diosgenin in hairy roots
of T. foenum-graecum. Diosgenin may inhibit melanogenesis
through the activation of the Phosphatidylinositol-3-kinase
(PI3K) pathway, and it may be considered as an effective in-
hibitor of hyperpigmentation [65]. Chemical structure of
diosgenin has shown in Fig. 2. The most important pharma-
cological effects of diosgenin are shown in Table 2.

Table 1 The most important pharmacological effects of galactomannan

Health benefits Key points Reference

Antidiabetic
activities

a. Galactomannan may reduce the glycemic index of starch, and regulates postprandial blood glucose. [37]

Antioxidant activities a. Galactomannan I and II mainly include D-mannose and D-galactose which have shown antioxidant activities. [38, 39]

Anticancer activities a. Galactomannan from Sesbania cannabina has shown anticancer activity which is related to increase caspase-12
expression.

[40]

Anticholinesterase
activities

a. Galactomanna II indicated strong anticholinesterase activity. [39]

Antiviral activities a. Sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution
and molecular weights.

[41]

Dengue virus a. Galactomannan extracted from Leucaena leucocephala seeds (GML), indicated that GML is a potential
polysaccharide for biomaterials development which could involve interactions between Concanavalia ensiformis
seeds (ConA) in immune system and viruses.

[42]

Gastric diseases a. Galactomannans from Caesalpinia pulcherrima can be basis for new compounds in the treatment of gastric
diseases.

[43]

Fig. 2 Chemical structure of diosgenin [44] (Jesus et al. 2016)
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Conclusion
Traditional herbal medicines have been considered as a
source of curative remedy due to health promote and
prevent diseases, and plants are invaluable sources of
new drugs. Galactomannans represent one of the most
versatile classes of available materials for applications in
many sectors specially pharmaceuticals. It is a group of
storage polysaccharides from various plants which re-
serve energy for germination in the endosperm. They
are with rigid hydrophilic backbone (polymannose, or

mannan), and grafted galactose units. They are often
used in various forms for human consumption. Four
major sources of seed galactomannans are locust bean
(Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara
(Caesalpinia spinosa Kuntze), and fenugreek (T.foenum-
graecum). The most important pharmacological benefits
of galactomannan are antidiabetic, antioxidant, antican-
cer, anticholinesterase, antiviral activities, and appropri-
ate for dengue virus and gastric diseases. A steroidal
sapogenin, occurs in plants such as Dioscoreaalata,

Table 2 The most important pharmacological effects of diosgenin

Health benefits Key points Reference

Anti-diabetic effects a. Diosgenin could have a beneficial role against aortic damage induced by oxidative stress in diabetic state. [66–69]

b. Diosgenin demonstrated anti-glycating properties and it improved the renal function in diabetic rats.

c. Diosgenin can effectively regulate the related targets and pathways of glycolipid metabolism, apoptosis,
inflammation and oxidative stress to improve diabetes and it complications.

[70]

d. Diosgenin counteracted the effect of diabetes on the growth plate and cancellous bone microarchitecture in
the distal femur, indicating some limited beneficial impact on the skeleton.

[71]

Anti-inflammatory
activity

a. Diosgenin modulates adipokine expression in perivascular adipose tissue (PVAT) against inflammation which
depends on AMPK.

[72, 73]

b. Diosgenin down-regulated the inflammatory mediators which prevent the atherosclerotic disease progression
and concomitant suppression of inflammatory mediators in liver and brain.

[74]

Anti-Obesity effects a. Dioscin and its aglycone, diosgenin, both suppressed the time-dependent increase of blood triacylglycerol
level when orally injected with corn oil to mice, which shows their inhibitory potential against fat absorption.

[75]

Anti-oxidant effects a. Diosgenin with antioxidant function may show potential to improve cardiac tissue abnormalities. [76]

b. Diosgenin shows concentration dependent antioxidant potential. [77, 78]

Anti-proliferative
effects

a. The azasteroidal compounds from diosgenin showed lower cytotoxicity and lactam-type enamide derivative
showed activity in cancer cell line MDA-MB-231.

[79]

Anti-psoriasis effects a. In animal studies, diosgenin attenuated psoriatic lesions on mice by inhibiting vascular formation partially by
reducing the VEGF-α expression in keratinocytes.

[80]

b. Diosgenin down-regulated pro-inflammatory cytokines through TLR4/Myd88 inhibition and up-regulated sev-
eral differentiation markers, expression in HaCaT cells.

[80]

Anti-cancer effects a. Diosgenin is a novel blocker of the STAT3 activation pathway, with a potential role in the treatment of
hepatocellular carcinoma (HCC) and other cancers.

[81, 82]

b. Diosgenin has shown inhibitory activity on human breast cancer MDA-MB-231 cell migration, and inhibited ac-
tion polymerization, Vav2 phosphorylation and Cdc42 activation which shows its therapeutic potential for human
breast cancer metastasis therapy.

[83]

c. Inhibition of Enhancer of zeste homo-log2 (EZH2) by diosgenin could be a promising therapeutic method for
pancreatic cancer (PC) treatment as EZH2 signaling is closely associated with the anti-tumor characteristics of di-
osgenin in PC cells.

[84]

e. Diosgenin and its glycosidic derivatives are promising anti-cancer compounds as they are compounds with
low necrotic activity and selective action.

[85, 86]

Anti-tumour effects a. A set of diosgenin compounds should be considered as a promising scaffold for their abilities as anticancer
and immunomodulatory agents.

[87, 88]

Hepatoprotective
effects

a. Administration of diosgenin may lead to reduction of liver injury indices and oxidative stress and inflammatory
events.

[89]

Improve female
reproduction

a. Phytoestrogen diosgenin promotes basic ovarian cell functions (proliferation, apoptosis, steroid, and peptide
hormone release).

[90]

Multipe sclerosis a. Diosgenin alleviated the progression of experimental autoimmune encephalomyelitis with reduction in central
nervous system inflammation and demyelination.

[91]

Skin aging a. A restoration of keratinocyte proliferation in aged skin, showed that diosgenin may have potential to be
considered as a safe health food for climacteric.

[92]

Wound healing a. Genipin crosslinked gelatin/diosgenin-nanocellulose hydrogels showed excellent antibacterial effect towards
Gram + and – bacteria, and it is suitable in wound healing.

[93]
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Smilax china, and T. foenum-graecum is diosgenin.
Diosgenin, a triterpenoid having two pentacyclic rings.
The most important health benefits of diosgenin are
anti-diabetic, anti-inflammatory, anti-obesity, antioxi-
dant, anti-proliferative, anti-psoriasis, anti-cancer, anti-
tumour, and hepatoprotective effects; it can also improve
female reproduction, multiple sclerosis, and appropriate
for skin aging and wound healing.
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