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Abstract

Background: Diabetes mellitus is one of the silent killer diseases affecting millions of people globally and some of
the key enzymes in managing this disease are α-amylase and α-glucosidase This study was designed to investigate
the possible molecular interactions between various bioactive compounds of Senecio biafrae leaf on α-amylase and
α-glucosidase (enzymes) receptors an important target protein in Type 2 diabetes mellitus.

Methods: This study involved the investigation of the of gallic acid, chlorogenic, caffeic acid, rutin, quercetin, and
kaempferol (ligands) for Lipinski’s rule of five using Molinspiration, ADMET profiles using admetSAR server and
molecular docking of 3D structures of the six bioactive compounds and metformin against α-amylase and α-
glucosidase were carried out using AutoDockVina.

Results: The results revealed that caffeic acid, quercetin, and kaempferol obey Lipinski’s rule of five. All the ligands
demonstrated high gastrointestinal tract absorption except rutin and chlorogenic acid, only one can serve as a P-
glycoprotein substrate and three of the ligands used can act as cytochrome P450 inhibitors isoforms. All the ligands
had a high binding affinity than metformin (the standard drug used).

Conclusion: In can be concluded that some of the bioactive compounds (especially caffeic acid) in Senecio biafrae
leaf have antidiabetic activity, which they may serve as a potential antidiabetic drug in the management of
diabetes mellitus than metformin.
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Introduction
Type 2 diabetes mellitus (T2DM) has been known with
hyperglycaemia, which can lead to series of health com-
plications like nephropathy, neuropathy, retinopathy,
and cardiovascular disease [6]. Alqahtani et al. [7] docu-
mented that T2DM is one of the health diseases and ac-
counting for more than 90% incidence of diabetes
mellitus globally.
The main therapeutic method of managing postpran-

dial hyperglycaemia in T2DM is by inhibiting the diges-
tion of nutritional carbohydrates [5]. Furthermore,

pancreatic α-amylase is the main enzyme involves in
breaking down nutritional polysaccharides into disaccha-
rides and by another important enzyme known as α-
glucosidases to monosaccharides (e.g. glucose), which
can be absorbed into the bloodstream. α-glucosidase is
an enzyme found in the brush border of the small intes-
tine epithelium [12]. Hence, inhibiting α-amylase and α-
glucosidase enzymes can help in retarding nutritional
carbohydrate digestion and glucose uptake [20].
Currently, there are several conventional drugs avail-

able in managing T2DM, these include acarbose, vogli-
bose, and miglitol but these are characterized by
different side effects [10]. Therefore, it is believed that
bioactive compounds from medicinal plants are known
with little or no side effects [24], an example of such a
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plant is Senecio biafrae leaf as reported by Ajiboye et al.
[5]. Senecio biafrae (local name Worowo in Yoruba
speaking part of Nigeria) belongs to the group of vegeta-
bles that grow in large quantities as undercover in tree
crop plantation. This leafy vegetable is also considered
for its high medicinal value as the juice extracted from
the leaf is wholly applied to fresh wounds or cuts as a
styptic in the rural community for man and animal use
[15]. It is one of the major green leafy vegetables con-
sumed in Nigeria, Ghana, Benin, Sierra Leone,
Cameroon and Gabon [5]. This plant leaf is endowed
with medicinal properties [3]. Ajiboye et al. [4] docu-
mented the phytochemical constituents of the plant’s

leaf, with a high content of phenolic compounds. Be-
cause of this, in silico prediction of druggable phyto-
chemicals from this plant leaf against α-amylase and α-
glucosidases may be a breakthrough in designing a new
drug in the management of diabetes mellitus.

Methods
Retrieval of bioactive compounds
Six bioactive compounds were gotten from a published
article by Ajiboye et al. [5], and their chemical structures
were reclaimed from PubChem (https://pubchem.ncbi.
nlm.nih.gov/) database in SDF format, which was then

Table 1 Bioactive compounds identified in Senecio biafrae leaf

Table 2 Analysis of oral drug-likeness of the six bioactive compounds using Lipinski’s rule of five

Bioactive Compounds Molecular weight
(g/mol)

Log P Number of hydrogen
bond donor

Number of hydrogen
bond acceptor

Molar refractivity

Caffeic acid 180.16 0.97 3 4 47.16

Gallic acid 170.12 0.21 4 5 38.47

Metformin 129.16 0.34 3 2 36.93

Quercetin 302.24 1.63 5 7 78.04

Rutin 617.66 − 92.39 10 14 147.66

Chlorogenic acid 354.31 0.87 6 9 83.50

Kaempferol 286.24 1.70 4 6 76.01

Ajiboye Clinical Phytoscience             (2022) 8:4 Page 2 of 17

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/


converted into PDB format with the aid of Open Babel
Converter (http://openbabel.org/wiki/Main_Page) [21].

Examining the bioactive compounds for Lipinski’s rule of
five
This rule assesses the drug-likeness of the six bioactive
compounds using molinspiration cheminformatics tool.
This includes the molecular weight of the bioactive com-
pounds, Log P, number of hydrogen bond donors, number
of hydrogen bond receptors, and molecular refractivity [17].

ADMET prediction
The absorption, distribution, metabolism, excretion, and
toxicity (ADMET) were analyzed [18]. The study in-
cludes mutagenicity, toxicological dosage level as well as
pharmacologically properties of each bioactive com-
pounds, which were done using Swissadme (http://www.
swissadme.ch) and admetSAR servers [11].

Molecular docking
The docking analyses of the six bioactive compounds
and metformin (standard antidiabetic drug) with α-
amylase and α-glucosidase were determined using Auto-
DockVina. The best complexes showing the highest
score of molecular interactions between each ligand
(bioactive compounds) with α-amylase and α-
glucosidase enzymes used as receptors were selected.
Also, PyMOL was used to view the amino acids of α-

amylase and α-glucosidase interacting with the inhibitors
at active sites.

Results
Selection of bioactive compounds
The six bioactive compounds obtained from Senecio bia-
frae leaf used in this study, belong to two chemical clas-
ses (phenol and flavonoid) as indicated in Table 1.

Analysis of Lipinski’s rule of five
In fulfilling the drug-likeness, molecules that have a mo-
lecular mass not greater than 500 Da, LogP not greater
than 5, hydrogen bond donor not greater than 5, hydro-
gen bond acceptor not greater than 10, and molar re-
fractivity between 40 to 130. As illustrated in Table 2
only caffeic acid, quercetin and kaempferol obey this
rule. Gallic acid, metformin, and chlorogenic acid
slightly meet the criteria of this rule. Gallic acid and
metformin have molar refractivity lower than 40 while
chlorogenic acid has a number of hydrogen bonds above
5. On the other hand, rutin did not meet four of the
Lipinski’s rule of five.

ADMET profiles
As depicted in Table 3, all the bioactive compounds
used in this study, as well as metformin, have high
gastrointestinal tract (GIT) absorption except rutin and
chlorogenic acid with low GIT absorption. All the six

Table 3 ADMET distribution profiles of the six bioactive compounds

Bioactive compounds G1 Absorption BBB Permeability P-gp Substrate CYP1A2
Inhibitor

CYP2C19
Inhibitor

CYP2C9
Inhibitor

CYP2D6
Inhibitor

CYP3A4
Inhibitor

Caffeic acid High No No No No No No No

Gallic acid High No No No No No No Yes

Metformin High No No No No No No No

Quercetin High No No Yes No No Yes Yes

Rutin Low No Yes No No No No No

Chlorogenic acid Low No No No No No No No

Kaempferol High No No Yes No No Yes Yes

Table 4 AutoDockVina results for each bioactive compound with their binding affinity against α-amylase and α-glucosidase
S/No Bioactive Compounds Binding affinity (Kcal/mol) against α-amylase Binding affinity (Kcal/mol) against α-glucosidase

1 Caffeic acid −6.5 − 6.5

2 Chlorogenic acid −7.2 − 8.3

3 Gallic acid − 5.4 −6.1

4 Kaempferol −8.1 − 8.5

5 Quercetin −8.2 −8.4

6 Rutin −8.2 −8.5

7 Metformin −4.5 −5.2
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bioactive compounds have no blood-brain barrier per-
meability, and only rutin can serve as the P-glycoprotein
(P-gp) substrate. In another vein, all the six bioactive
compounds and metformin (the standard used) are non-
inhibitors of cytochrome P450 isoforms, except quer-
cetin which inhibits CYP1A2, CYP2D6, and CYP3A4;
gallic acid inhibits CYP3A4; and kaempferol inhibits
CYP1A2, CYP2D6, and CYP3A4.

Molecular docking and binding energy analysis
The binding activity of α-amylase and α-glucosidase are
shown in Table 4 with all the six bioactive compounds

having a higher binding affinity than the standard drug
used. In α-amylase, rutin and quercetin have the highest
binding affinity of −8.2 kcal/mol while in α-glucosidase,
rutin and kaempferol have the highest binding affinity of
− 8.5 kcal/mol. Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and
12 shows the binding pose of each ligand with their re-
ceptors as well as their molecular interactions with dif-
ferent amino acid residues within the binding pocket of
the protein structure. All the ligands form hydrophobic
interaction, hydrogen bond, and π stacking with both of
α-amylase and α-glucosidase using different amino acids
(Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18).

Fig. 1 Binding pose and binding site of caffeic acid with α-glucosidase (panel A), molecular interaction of caffeic acid with amino acid residues
within the binding pocket of the protein structure (panel B)

Fig. 2 Binding pose and binding site of chlorogenic acid with α-glucosidase (panel A), molecular interaction of chlorogenic acid with amino acid
residues within the binding pocket of the protein structure (panel B)
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Discussion
The present study was designed to investigate the in
silico molecular interaction of bioactive compounds
from Senecio biafrae with key enzymes related to dia-
betes mellitus. Diabetes mellitus (DM) is a metabolic
disorder with increasing prevalence all over the world.
According to Li and Ding [16], there were approximately
366 million people suffered from DM (aged 20–79 years)

in 2011 and this figure would climb up to 552 million by
the year 2030. DM is characterized by hyperglycemia as
well as the development of diabetes-specific complica-
tions. These complications can result in disastrous con-
sequences, but many synthetic drugs used today failed to
complete long-term glycemic control [22]. Clinically,
novel treatments with fewer side effects are desirable for
the control of DM as well as its complications.

Fig. 3 Binding pose and binding site of gallic acid with α-glucosidase (panel A), molecular interaction of gallic acid with amino acid residues
within the binding pocket of the protein structure (panel B)

Fig. 4 Binding pose and binding site of kaempferol with α-glucosidase (panel A), molecular interaction of kaempferol with amino acid residues
within the binding pocket of the protein structure (panel B)
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Fig. 5 Binding pose and binding site of quercetin with α-glucosidase (panel A), molecular interaction of quercetin with amino acid residues
within the binding pocket of the protein structure (panel B)

Fig. 6 Binding pose and binding site of rutin with α -glucosidase (panel A), molecular interaction of rutin with amino acid residues within the
binding pocket of the protein structure (panel B)

Fig. 7 Binding pose and binding site of metformin with α-glucosidase (panel A), molecular interaction of metformin with amino acid residues
within the binding pocket of the protein structure (panel B)
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Fig. 8 Binding pose and binding site of caffeic acid with alpha amylase (panel A), molecular interaction of caffeic acid with amino acid residues
within the binding pocket of the protein structure (panel B)

Fig. 9 Binding pose and binding site of chlorogenic acid with α- amylase (panel A), molecular interaction of chlorogenic acid with amino acid
residues within the binding pocket of the protein structure (panel B)

Fig. 10 Binding pose and binding site of gallic acid with α-amylase (panel A), molecular interaction of gallic acid with amino acid residues within
the binding pocket of the protein structure (panel B)
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Interestingly, the use of plant extracts that possess wide-
spread biological functions has increased in recent years
[16, 22].
According to Oboh [19], the phenolic constituent of

plants endowed with antioxidants capable of scavenging
free radicals produced in the body. The presence of fla-
vonoids and phenolics (gallic acid, chlorogenic, caffeic
acid, rutin, quercetin, and kaempferol) in Senecio biafrae
may also contribute to lowering cellular oxidative stress
and inhibit α-amylase, and α-glucosidase activities
among others [1]. The uses of the phenolic extract of S.
biafrae leaf in vitro in the management of type II dia-
betes mellitus are scanty in the literature.

Alpha-glucosidase is a glucosidase located in the brush
border of the small intestine that acts upon α (1→ 4)
bonds [8]. Alpha-glucosidase breaks down starch and di-
saccharides to glucose. Alpha-glucosidase inhibitor com-
petitively and reversibly inhibits alpha-glucosidase in the
intestines. This inhibition lowers the rate of glucose ab-
sorption through delayed carbohydrate digestion and ex-
tended digestion time [23]. Hence, alpha-glucosidase as
well as alpha-amylase (found in the salivary gland) inhib-
itors are used as anti-diabetic drugs in combination with
other anti-diabetic drugs.
As demonstrated in Table 2, caffeic acid, quercetin,

and kaempferol obey Lipinski’s rule of five or Pfizer’s

Fig. 11 Binding pose and binding site of kaempferol with α-amylase (panel A), molecular interaction of kaempferol with amino acid residues
within the binding pocket of the protein structure (panel B)

Fig. 12 Binding pose and binding site of quercetin with α-amylase (panel A), molecular interaction of quercetin with amino acid residues within
the binding pocket of the protein structure (panel B)
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rule, which is one of the techniques normally employed
in assessing the drug-likeness of a chemical compound.
This rule gives a clue if a chemical compound possesses
pharmacological properties that may be plausible as an
oral drug for humans or not [17, 21]. This implies that
caffeic acid, quercetin, and kaempferol may serve as po-
tential drugs in the management of diabetes mellitus
and probably better than metformin.
Caffeic acid, gallic acid, quercetin, and kaempferol

have high absorption in the human gastrointestinal tract

(Table 3). This means that these bioactive compounds
can be easily metabolized in the human body system.
Also, according to Daneman and Prat [9], the blood-
brain barrier (BBB) is a selective semipermeable border
of endothelial cells that inhibits solutes in the circulating
blood from crossing into the extracellular fluid of the
central nervous system where neurons reside. The
blood-brain barrier is formed by endothelial cells and
permits the passage of some molecules by passive diffu-
sion and selective transport of different nutrients, ions,

Table 5 Hydrogen bonding and hydrophobic interactions between caffeic acid and amino acid residues within α-glucosidase
binding site

Table 6 Hydrogen bonding and hydrophobic interactions between chlorogenic acid and amino acid residues within α -glucosidase
binding site

Ajiboye Clinical Phytoscience             (2022) 8:4 Page 9 of 17

https://en.wikipedia.org/wiki/Endothelium
https://en.wikipedia.org/wiki/Central_nervous_system


organic anions, and macromolecules (like glucose, water,
and amino acids) that are key to neural function as doc-
umented by Gupta et al. [14]. The no blood-brain barrier
permeability of caffeic acid, gallic acid, quercetin, rutin,
chlorogenic acid, kaempferol, and metformin support
their non- mutagens and non-carcinogens potentials
(Table 3).
Caffeic acid, gallic acid, quercetin, chlorogenic acid,

kaempferol, and metformin are non-substrate and non-
inhibitor of P-glycoprotein (P-gp). Hence, these com-
pounds cannot be acknowledged by the P-gp for any efflux
[11]. P-gp is a plasma membrane protein that acts as a lo-
calized drug transport mechanism, that energetically dis-
tributing drugs out of the cell, therefore they are
important proteins involved in xenobiotic efflux. It was

only rutin that has the ability as a substrate of P-gp, which
implies that P-gp can identify this compound and prob-
ably cause its efflux (Table 3). Furthermore, Nisha et al.
[18] reported that cytochrome P450 (CYP P450) is a
member of microsomal enzymes involved in the metabol-
ism of drugs in the human body system. In this study, the
CYP 450 inhibitory profiles were evaluated using CYP1A2,
CYP 2C19, CYP 2C9, CYP 2D6 and CYP 3A4. Hence, caf-
feic acid, metformin (the standard used), rutin and chloro-
genic acid demonstrated no inhibitory potential with the
possibility of a lower drug-interaction (Table 3).
Rutin and kaempferol (− 8.5 kcal/mol), followed by

quercetin (− 8.4 kcal/mol), ranked highest in binding af-
finity with alpha-glucosidase better than that of a stand-
ard drug, metformin (− 5.2 kcal/mol) (Table 4). The

Table 7 Hydrogen bonding and hydrophobic interactions between gallic acid and amino acid residues within α-glucosidase
binding site

Table 8 Hydrogen bonding and hydrophobic interactions between kaemferol and amino acid residues within α-glucosidase
binding site
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interactions of these compounds were stabilized by
hydrogen bonding and hydrophobic interaction. During
the docking simulation of alpha-glucosidase with the se-
lected bioactive compounds from Senecio biafrae, eleven
residues within the active site of alpha-glucosidase
(Ser157, Tyr158, Ser240, His280, Asp307, Lue313,
Arg315, Asp352, Asn415, Arg442) were intricate in

hydrogen bond formation with rutin, five residues within
the active site of alpha-glucosidase (Asp215, Arg315,
Asp352, Glu411, Arg442) were saliently involved in
hydrogen bond formation with kaemferol while amino
acids (Asp215, Gln279, His280, Arg315, Asp352) were
important in hydrogen bond formation with quercetin
(Figs. 1, 2, 3, 4, 5, 6 and 7). Hydrophobic interactions

Table 9 Hydrogen bonding and hydrophobic interactions between quercetin and amino acid residues within α-glucosidase binding
site

Table 10 Hydrogen bonding and hydrophobic interactions between rutin and amino acid residues within α-glucosidase binding
site
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also contributed to the interaction of rutin with amino
acid residues (Tyr158, Phe159, Phe178, Phe303, Arg315),
kaempferol with amino acid residues (Tyr158, Phe159,
Phe178, Val216) and quercetin with amino acid residue
(Tyr158, Phe159, Phe178) within the active site of alpha-
glucosidase (Tables 5, 6, 7, 8, 9, 10 and 11). Therefore,
inhibition of alpha-glucosidase by rutin, kaempferol, and
quercetin is a potent target for effective anti-diabetes
drug design as it effectively checkmates the level of
blood glucose.

Alpha-amylase is an enzyme that hydrolyzes alpha
bonds of large, alpha-linked polysaccharides, such as
starch and glycogen, yielding glucose and maltose that
hydrolyzes alpha bonds of large, alpha-linked polysac-
charides, such as starch and glycogen, yielding glucose
and maltose (Gaspar et al., [13]). It is the major form of
amylase found in humans and other mammals. Alpha
-amylases are enzymes that hydrolyze starch molecules
to give diverse products including dextrins and pro-
gressively smaller polymers composed of glucose units

Table 11 Hydrogen bonding and hydrophobic interactions between metformin and amino acid residues within α- glucosidase
binding site

Table 12 Hydrogen bonding and hydrophobic interactions between caffeic acid and amino acid residues within α-amylase binding
site
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Table 13 Hydrogen bonding and hydrophobic interactions between chlorogenic acid and amino acid residues within α-amylase
binding site

Table 14 Hydrogen bonding and hydrophobic interactions between gallic acid and amino acid residues within α -amylase binding
site

Table 15 Hydrogen bonding and hydrophobic interactions between kaempferol and amino acid residues within α -amylase
binding site
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Table 16 Hydrogen bonding and hydrophobic interactions between quercetin and amino acid residues within α-amylase binding
site

Table 17 Hydrogen bonding and hydrophobic interactions between rutin and amino acid residues within α-amylase binding site

Table 18 Hydrogen bonding and hydrophobic interactions between metformin and amino acid residues within α-amylase binding
site
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which causes hyperglycemia and development of type
II diabetes mellitus [2]. Rutin (− 8.2 kcal/mol), quer-
cetin (− 8.2 kcal/mol) and kaempferol (− 8.1 kcal/mol)
exhibited better interaction by showing more binding
affinity with alpha-amylase than the standard drug
metformin (− 4.5 kcal/mol) (Table 4) and this inter-
action was stabilized and sustained by hydrophobic
interaction and hydrogen bonding. Gln63, Tyr151,
Asp197, Asp300 are important residues for hydrogen

bonding when rutin interacted with α-amylase. While
Trp59, Arg195, Glu233 were very germane for the
formation of hydrogen bonding when quercetin inter-
acted with α-amylase, Arg195 and Glu233 were also
very important residues for hydrogen bonding when
kaempferol interacted with α-amylase (Figs. 8, 9, 10,
11, 12, 13 and 14). Residues (Trp59, Lue162, Lue165,
Ile235), (Trp58, Trp59) and (Trp58, Trp59, Tyr62),
were responsible for hydrophobic interaction when α-

Fig. 13 Binding pose and binding site of rutin with α-amylase (panel A), molecular interaction of rutin with amino acid residues within the
binding pocket of the protein structure (panel B)

Fig. 14 Binding pose and binding site of metformin with α-amylase (panel A), molecular interaction of metformin with amino acid residues
within the binding pocket of the protein structure (panel B)
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amylase interacted with rutin, quercetin, and kaemp-
ferol respectively (Table 12, 13, 14, 15, 16, 17 and
18). Hence, the inhibition of alpha-amylase by rutin,
quercetin, and kaemferol is implicative of their vast
anti-diabetic abilities and thus, a potent alternative
for synthetic drugs.

Conclusion
From the results obtained in this study, it can be deduced
that the bioactive compounds used especially caffeic acid
was the only compound that obeys Lipinski’s rule of five,
good ADMET results, although ranked 4th in binding af-
finity against α-glucosidase and 5th in binding affinity
against α-amylase may be a promising therapeutic agent
than the metformin in the management of type II diabetes
mellitus. In another word, compounds that can also be ap-
plicable as a potent alternative drug in the management of
type II diabetes mellitus are quercetin and kaempferol,
they obey Lipinski’s rule of five, slightly poor ADMET re-
sults and they have high binding affinity against both
alpha-glucosidase and alpha-amylase while rutin only has
good binding affinity but does not obey Lipinski’s rule of
five and slightly bad ADMET profiles.
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