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Abstract 

Inflammatory bowel disease (IBD) is a chronic idiopathic inflammation that can grossly affect the entire gastrointesti-
nal tract (GIT) from the mouth to the anus. Crohn’s disease is the most known type of IBD and has been the focus of 
attention due to its increase in prevalence worldwide. Although the etiology is yet to be elucidated, recent studies 
have pointed out Crohn’s disease to arise from a complex interaction between environmental influences, genetic 
predisposition, and altered gut microbiota, resulting in dysregulated adaptive and innate responses. The present-
ing hallmarks of Crohn’s disease may include weight loss, nausea, vomiting, abdominal pain, diarrhea, fever, or chills. 
Treatment is usually done with many approved immunosuppressive drugs and surgery. However, a promising avenue 
from natural compounds is a safer therapy due to its safe natural active ingredients and the strong activity it shows in 
the treatment and management of diseases. Diosgenin, “a major biologically active natural steroidal sapogenin found 
in Chinese yam,” has been widely reported as a therapeutic agent in the treatment of various classes of disorders such 
as hyperlipidemia, inflammation, diabetes, cancer, infection, and immunoregulation. In this review, an analysis of 
literature data on diosgenin employed as a therapeutic agent for the treatment of Crohn’s disease is approached, to 
strengthen the scientific database and curtail the dreadful impact of Crohn’s disease.
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Introduction
Crohn’s disease is an enervating and incorrigible per-
sistent inflammatory bowel disease (IBD). Four years 
ago, over six million cases of IBD were reported glob-
ally with a reported increase in age prevalence rate from 
79.5–84.3% per a hundred thousand population [1]. High 
Socio- demographic Index (SDI) locations revealed the 
highest amount of age-standardized prevalence rate 
ranging from USA (most prevalent) to Singapore (least 
prevalent). It is portrayed by mucosal inflammatory 
ulceration, which could grow along the gastrointesti-
nal tract (GIT) yet most normally influence the distal 
small digestive system. IBD is characterized by inflam-
mation of the transmural, affecting the thickness of the 

entrail wall [2]. While the pathogenesis of Crohn’s disease 
(CD) is somewhat complex, it is imperative to note that 
the site of disease onset is activated by natural factors 
which derange the mucosal barriers, thus modulating the 
healthy stasis of the gut microbiota.

These principal factors (immune response, microbiota, 
and genetics) are affected by the individual’s exposure 
which relates to other risk factors leading to Crohn’s dis-
ease [3]. Modern treatment in Crohn’s disease includes 
the use of immunomodulators (thiopurines and metho-
trexate), anti-inflammatory agents (corticosteroids), 
anti-tumor necrosis factor agents (anti-TNF), antibiot-
ics, as well as surgical processes [4, 5]. A study showed 
that the usage of anti-TNF agents and thiopurines gave 
synergistic result that were effective in the management 
of Crohn’s disease by about 50% [6]. However, Chinese 
yam (Dioscorea opposita), a regional crop in China [7] 
is of nourishing and fiscal importance. It is grown in the 
northeastern, central, and southeastern areas in China 
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having Henan province as the major growing region of 
Dioscorea species with the highest grade. The nutrients 
present in Chinese yam includes proteins with (3.59% - 
8.93%), starches (43.7%), amino acids (2.31% to 7.26%), 
sugars (3.39%), vitamins and amylases [8–10]. While 
diosgenin is inarguably the most potent phytochemical 
in Dioscorea spp [11, 12], allantoin which is known to 
assist in wound healing, and speed up cell regeneration is 
also present in bountiful quantities in Dioscorea spp [13]. 
However, a steroidal saponin, particularly diosgenin is 
the exemplary phytochemical in Dioscoreaceae [11, 12].

Diosgenin denotes a C27 spiroketal steroidal saponin 
richly accessible in nature. Saponin, an active compound 
in plants like Trigonella, Costus, and Smilax species is 
found in Dioscorea opposita [14–16]. This steroid rep-
resents a great significance to industries and has been 
a subject important to numerous scientists worldwide 
throughout the years. Moreover, the therapeutically help-
ful steroidal medications, such as corticosteroids and sex 
hormones are derived in a semisynthetic manner from 
its active precursor diosgenin [17, 18]. Recently, stud-
ies reported that diosgenin possesses numerous biologi-
cal activities such as hypolipidemic, anti-inflammatory, 
anti-proliferative, hypoglycemic activity, as well as a 
potent antioxidant [19–21]. However, further research 
have shown that diosgenin exhibits an immunosuppres-
sive effect in inflammatory bowel disease via inhibition of 
NF-кB activity [22–26]. Taking into account that Crohn’s 
disease is a chronic relapsing inflammatory disease, this 
review is aimed at illustrating the complex role of NF-кB 
activity and suggesting the active constituents present 
in Chinese yam (diosgenin) as a therapeutic agent for 
the management of Crohn’s disease. This review futher 
detailed the pathogenesis of Crohn’s disease and as well 
explain the pharmacological role of diosgenin in the 
management of this disease.

Pathogenesis of CROHN’S disease
Over the years, the outbreak of Crohn’s disease has been 
recorded in several continents, particularly in Northern 
and Western Europe, also in North America regions [27]; 
0.21% per year in North America, 0.16% per year in the 
United Kingdom and 0.09% per year in Northern Europe 
[28–33]. Minor cases are reported in Africa, South 
America, and Asia [27]. Study reports from epidemiolo-
gists revealed that women are even more susceptible to 
Crohn’s disease than men and it is more common among 
individuals of Ashkenazi Jews [27].

Crohn’s disease is associated with an imbalance in any 
part of the GIT contrary to ulcerative colitis, affecting the 
colon alone. However, the manifestation of this disease 
exhibited some certain diseases such as; ileocaecal dis-
ease (40%), ileal disease (30%), or colonic disease (25%). 

There is the presence of anorectal abscess virtually in 30% 
of patients with this disease. Anatomical studies denoted 
Crohn’s disease to be sporadic, leading to damages in 
the intestine (“skip” lesions), and the bowel infected with 
edematous and the accumulation of fat deposit on the 
serosal surface. Finally, there is the formation of Ulcer 
in the mucous membrane altering dispersed aphthous 
ulcers to profound serpiginous pleomorphic ulcers. These 
can delve into the intestines, resulting in the formation of 
a fistula between the infected intestines with the contigu-
ous intestines, bladder, vagina, or skin [34].

Although the etiology of Crohn’s disease is yet to be 
elucidated, recent studies from researches have proposed 
several mechanisms which suggest CD may result from 
genetic susceptibility, environmental factors, and intesti-
nal microflora, leading to an aberrant immune response 
with a pact epithelial barrier function [35].

Genetics
Genetic studies on twins and families attested an active 
genetic impact on the procurement of CD. For instance, 
it was confirmed in about 50 % of monozygotic twins 
together with 30 % of offspring of parents affected 
with CD [36]. The successful genome-wide association 
(GWA) studies with linkage analysis and positional clon-
ing program have analyzed over 30 specific genetic loci 
that brought major insight to CD etiology. Some of the 
most strongly related gene susceptible to the role CD 
pathogenesis includes (CARD15/NOD2, IRGM, IL23R, 
LRRK2, and ATG16L1), interleukin 23 (IL-23) and T 
helper 17 (Th17), cell pathway (IL23R, IL12B (encoding 
IL-12p40), STAT3, JAK2, and TYK2) [37, 38].

The first gene discovered, Nucleotide-binding oli-
gomerization domain-containing protein 2 (NOD2) locus 
on chromosome 16q12 [39–41], is a cytosolic recogni-
tion receptor modulating the immune system against 
intracellular bacteria. However, 40% of western patients 
affected with CD exhibited three variations ((amino-acid 
substitutions Arg702Trp, Gly908Arg, and the frameshift 
FS1007insC) in the gene located within the leucine-rich 
repeat domain subjected for sensing muramyl dipeptide 
(MDP), a peptidoglycan component of both gram-pos-
itive and gram-negative bacteria cell wall [42]. NOD2 
is expressed in diverse roles relating to several cellu-
lar processes including regulating panteth cell function, 
viral sensing, altering apoptosis in regulating T cell, and 
regulating autophagy [41]. Studies have revealed that 
defects in NOD2 expression affect the sensing of mura-
myl dipeptide which activates series of innate immune 
responses and bacteria-killing, leading to the tenacity 
of intracellular bacteria with an effect on antimicrobial 
role in the lumen [43–45]. In continuation, MDP acti-
vation resulted in regulating effects of inherent immune 
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system such as suppressing cytokine effects (IL-23 driven 
Th17 responses), repression of other protein recognition 
receptor (TLR-2 and TLR-4 responses) and initiation of 
tolerance (via IL-10 and decreased TGF-β) [46, 47]. In 
addition, the activation of MDP via NOD2, induces the 
recruitment of the Ser/Thr/Tyr kinase RIPK2, which is a 
significant approach to downstream signaling pathways 
activation which stimulate the activation of NF-кB sign-
aling pathways and MAPK, modulating the production of 
effector molecules such as IL-8 [48–51]. IL-8, also known 
as neutrophil chemo-attractant denoting a pleiotropic 
proinflammatory cytokine developed from different 
stressors [52], also can be distinguished as an effective 
angiogenic factor relating to tumor growth and meta-
static tumor [53, 54] and as biomarkers for many chronic 
inflammatory diseases [55–57]. As regards NOD2, it was 
revealed that several cellular components secretes IL-8 
in response to the activation of NOD2 [58], with many 
groups which depict a decrease in IL-8 secretion in cells 
of CD patients due to NOD2 polymorphism [59, 60]. Fur-
thermore, on the gene susceptible to the role of CD, the 
detection in polymorphism of autophagy gene (ATG161, 
LRRK2, and IRGM) from GWAs in CD has activated 
important research work in IBD. Autophagy has been 
studied to play a crucial role in organism on cellular 
survival, differentiation, development and homeostasis 
against various pathologies such as infections, cancer, 
neurodegeneration and aging [61]. Studies on ATG161L1 
genes gave clear discernment on pathogenic results. 
However, two recent studies have revealed the defective 
autophagy response towards bacteria in the induction of 
CD. Cooney et  al., (2010) revealed autophagy relations 
with NOD2; In reaction to MDP, autophagy is induced 
via receptor-interacting serine/threonine –protein kinase 
2 (RIPK2), ATG7, ATG5 and ATG16L1 in dendritic cells. 
This reaction triggered the handling of bacteria through 
direct engulfment and successive propagation of major 
histocompatibility complex (MHC) class11 for antigen-
specific CD4+ T-cells responses in DCs [45]. Travassos 
et al., (2010) have also showed NOD2 to raise ATG16L1 
to the plasmalemma at the entry point of bacteria to trig-
ger xenophagy [62].

Environmental factors
Among the environmental factors hypothesized in CD, 
cigarette smoking has been found to be the most promi-
nent epidemiology evidence in the pathogenesis of CD. It 
was revealed that smokers are likely to develop CD with 
a two-times increase compare to non-smokers [18–20] 
[63]. A study has revealed that the effect of cigarette 
smoking can cause severe damages to both innate and 
adaptive immune responses, causing increase to micro-
bial infection which would aid its role in the etiology of 

CD [64]. Over the past decade, the role of environmental 
and genetic factors has been the major research contrib-
uted to the etiology of CD. Also, it has been proven that 
extract from cigarette smoke could cause a setback in 
NOD2 mRNA expression leading to the deterioration of 
NOD2 activity in intestinal epithelial cells [65].

In addition, the impact of diet seems ambiguous in 
developing CD. However, certain studies have illustrated 
diet containing excessive number of sugars, omega-6 
fatty acids, polyunsaturated fatty acids, total fat and meat 
increases the risk of developing CD but a diet rich in fiber 
and fruits lessened the growth of CD [66–68]. Also, the 
usage of non-steroidal anti-inflammatory drugs, aspirin, 
antibiotics, oral contraceptives and antibiotics are all 
connected with increasing the risk of CD [69–73].

Finally, the effect of epithelial differentiation and gut-
related lymphoid tissue assembly in innate intestinal 
microbiota have been hypothesized to be involved in the 
pathogenesis of CD [74], changes in the disintegration of 
intestinal mucosa or modification in the gut microbiome 
appears to activate the growth of CD in the bowel [75]. 
The interface between the gut microbes and host T-cells 
is an epithelial layer. The secretion of host protective fac-
tors like defensins, and the surface mucus layer, as well as 
the autonomic nervous system and the basement mem-
brane and the integrity of the epithelial cell influences 
the epithelial permeability. However, certain bacterial 
strains gravitate the change in bowel permeability in ani-
mal models, this alteration triggers an abnormal immune 
response showing increase in epithelial permeability in 
CD patients [76]. Patient affected with CD frequently 
show dysbiosis which includes increase in Gramma pro-
teobacteria and Actinobacteria as well as decrease in 
Bacteriodes and Firmicutes bacteria [77].

Immunological factors
CD4+ / T-helper cells, a key regulator in the immune 
system can be classified as Th1, Th17, Foxp3+ regula-
tory T(Treg) cells [78]. In some patients with CD, there 
is overproduction of cytokines such as interleukin 12(IL-
12) and interferon γ (IFN-γ) from the mucosal dendritic 
cells and macrophages leading to Th1 differentiation and 
inflammation within the intestinal mucosa [79]. High 
level of activated STAT4 and T-bet, IL-12 (Th1-assoi-
cated transcriptional factor) was present in a nuclear 
extract from T-cells confined from inflamed Crohn’s 
disease lesions [80]. Also, an embellished production 
of IL-18, a cytokine involved in perpetuating Th1 cells 
responses was revealed in the mucosa of patient with CD 
[81, 82]. Furthermore, in the membrane of patients with 
CD, there is abundant secretion of IFN-γ lamina pro-
pria lymphocytes which appears to escalate a classic Th1 
response resembling an acute infection process [83].



Page 4 of 12Ogundepo et al. Clinical Phytoscience             (2022) 8:8 

Several studies have been demonstrated on the role 
of Th17 cells in animals relating to gut inflamma-
tion and autoimmunity, of which there are few stud-
ies being examined on the effect of Th17 cells in 
patient with CD. A recent study in the lamina pro-
pria of patients with CD depicted an increased num-
ber of T-cells expressing retinoid-related orphan 
receptor-γ + (RORγ+), the great transcriptional fac-
tor for Th17 cells [84]. Pene et  al. in their study iso-
lated Th17 cells from deteriorated lesions of patient 
with Crohn’s disease [85]. Furthermore, in both human 
peripheral blood and the gut from healthy individual 
as well as patients with CD, two autonomic studies 
were proved on Th17 cells [86, 87]. The Th17 desig-
nated cytokines (IL-17A, IL-17F, IL-22, and IL-26) 
are increased in the bowel and serum of patient with 
IBD, and Th17 cells having a stimulated phenotype 
shown in the intestinal mucosa and blood of patients 
affected with CD [88–91]. Moreover, the two studies 
depicted these cells in the expression of ROR-γ+, IL-
23R and CCR6, lacking CXCR3, a chemokine receptor 
designated for Th1 cells [86, 87]. Annunziato et  al. in 
their study indicated IL-17A-producing T-cells in the 
intestine, with T-cells populations showing the expres-
sion of both IL-17A and IFN-γ, denoted as “Th17/Th1” 
cells [86]. Acosta-Rodriguez et  al. also determined 
Th17 cells to give the expression of CCR6 + CCR4+, 
as well as CCR6 + CXCR3+ expressing Th1 cells to 
produce both IL-17A and IFN-γ [87].

Treg cells, which are expressed by Forkhead box P3 
(FOXP3) are stable descent of dedicated regulator cells 
which play role in suppressing immune responses and 
perpetuation of relative constant condition within 
organism through resistance to self-antigens [92]. The 
operation of CD4+, CD25+ and sparse expression of 
CD127(IL-7 receptor) have been denoted to be the 
typical features of Tregs. In addition, the intolerance 
between the activated Treg cells as well as activated 
CD4+ T-cells is an expression of FOXP3, indicated as 
an explicit molecular marker [93]. FOXP3 regulatory 
roles are delineated in cell-cell interaction and the pro-
duction of cytokines such as IL-10, IL-35 and TGF-β. 
However, genetic variants of IL-10 and IL-35 with auto-
immune disease conveys a recommendation in the eti-
ology of IBD [94, 95]. Interestingly enough, studies on 
the impaired role of IL-10 receptor in human due to 
mutation have been delineated in a thorough clinical 
manifestation of CD [96]. Furthermore, studies have 
revealed that the upregulation of T-cells specific T-box 
transcription factor (T-bet), STAT, and the nuclear fac-
tor -κB (Nf-κB) proved an essential role in the devel-
opment of IBD lesions due to an impaired suppressive 
Treg cell [97] (Fig. 1).

Background of CHINESE yam
The genus Dioscorea includes more than 600 species of 
flowering plants in the Dioscoreaceae family, worldwide 
in tropical and temperate regions [13]. Chinese yam 
(Dioscorea polystachya and Dioscorea opposita), also 
known cinnamon-vine [99]. In the China language, it 
is referred to as huáishān [100], an endemic species of 
flowering plant with an important invigorant and eco-
nomic relevance in China [7]. The northern, southern, 
and central region in China, commonly cultivates Chi-
nese yam, and is widely distributed to some Asia coun-
tries such as Korea and Japan. General composition 
includes starches (43.7%), sugars (3.39%), proteins (3.59% 
to 8.93%), amino acids (2.31% to 7.26%), vitamins and 
amylases, amidst others [8–10]. Furthermore, various 
bioactive compounds are available in Chinese yam tubers 
such as diosgenin, choline [101], flavonoids and polyphe-
nols [102], and allantoin, which shows a keratolytic effect, 
promoting cell regeneration and healing of wounds [11]. 
Decades ago, it was observed that dioscorin is a potential 
active agent with biological activities both in  vitro and 
in vivo, encompassing the antihypertensive, epithelial cell 
protecting activities, immunomodulatory, lectin, antioxi-
dant and enzymatic reactions [103]. A current literature 
backed the perception of extract from Chinese yam hav-
ing the potential to inhibit Akt, MAPK, and Nf-κB signal-
ing pathway [104].

Diosgenin, a major active constituent, occurs abun-
dantly in Dioscorea species, Heterosmilax species, and 
Trigonella foenum-graecum [105]. It was confirmed that 
diosgenin has shown anti-diabetes effects [106, 107] 
anti-apoptosis [108] as well as mitigating oxidative stress 
[109–111] and inflammation [112]. Reports from phar-
macological studies have revealed the anti-proliferative 
property of diosgenin, ameliorating the vascular system 
in a chronic renal failure model in rats by expanding the 
aorta eNOS expression in the rat [113] (Fig. 2).

Role of DIOSGENIN in CROHN’S disease
The extract from Chinese yam, Diosgenin is a family of 
spirostanol steroid compounds having a C27 spiroketal 
steroids compound. It has a relative molecular mass of 
414.62 and molecular formula to be C27H42O3 [114]. 
Diosgenin is depicted as six rings, with the initials com-
prising of four rings, being the steroid core, together 
with the attachment of two latter rings in form of ket-
als. It is replaced with an OH group situated exactly at 
the 3β position of the first ring, with a double bond at 
the 5–6 position as well as a R-Configuration at posi-
tion 25. One of its glycosides, dioscin is attached to the 
3β position of diosgenin to form saponins, often seen 
to be a major bioactive saponin with the effects against 
hypolipidemia, inflammation, allergy, viral, fungal and 
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immunoregulation [115–117]. In addition, studies have 
revealed that diosgenin ameliorated cholesterol secretion 
via the biliary excretion, restrained cholesterol absorp-
tion [118–121], altered lipoxygenase activities caused by 

differentiation of human erythroleukemia cell line [122], 
as well as cell cycle suspension in osteosarcoma cell line 
of human [123]. In the pathogenesis of inflammatory 
bowel disease (crohn’s disease and ulcerative colitis), NF 
кB has been identified to be one of the key regulators in 
the complex mechanisms such as; signaling mechanism 
via epithelial cells, dysregulated cytokine production, 
lymphocytes and macrophages. However, the transcrip-
tion factor NF-кB is expressed and activated strongly in 
the inflamed bowel of patient affected with IBD. Studies 
carried on an inflamed gut from macrophages and epi-
thelial cells of an IBD patient depicted an increased level 
of NF-кB p65 [124]. The increased level of NF-кB expres-
sion in macrophages led to the production and secretion 
of certain pro-inflammatory cytokines such as; TNF-α, 
IL-1, IL-6, IL-12 and IL-23 which are directly affected 

Fig. 1  Schematic representation of the multifactorial pathogenesis of Crohn’s disease. Available therapeutic options are currently targeted at the 
environmental, immunological and genetic causes of Crohn’s disease [98]

Fig. 2  Structure of Diosgenin {25R-spirost-en-3β-ol]
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in the mucosal tissue damage relating to IBD [125, 126]. 
Also, lamina propria fibroblast have been hypothesized 
to show a NF-кB pro-inflammatory role in IBD [127]. 
However, a proven study on the effect of diosgenin on 
a bacteria-recombinant human tumor necrosis factor 
(TNF-α) showed that diosgenin inhibited TNF medi-
ated NF-кB activation and its regulated genes products 
{c-Rel, RelA (p65), Rel B, NF-kB1 (p50 and p105) and 
NF-kB2 (p52)} in a dose dependent manner at 50 μm 
and a complete annulling of NF-кB activity at 100 μm 
[128]. Furthermore, the use of Western Blot analysis of 
an antibody detecting only serine phosphorylated form 
of IkBα affirmed that diosgenin completely suppressed 
TNF-induced IkBα phosphorylation (inhibitory subunit 
of NF-кB) in 5mins [129]. Thus, it has been proven that 
diosgenin inhibits the activation of NF-кB by inhibiting 
the degradation and phosphorylation of IkBα. Lastly, 
corticosteroids, a natural precursor of diosgenin [16, 17] 
has been approved to be an immunosuppressive drug on 
IBD, used to induce an over-expression of IkBα which is 
known to retain NF-кB in the cytoplasm together with 
the interaction of p65 to inhibit the activation of NF-кB 
[26, 130–134]. Over the years, the research community 
have implicated the role of inflammation and the impact 
of free radical induced oxidative stress in the pathogen-
esis of Crohn’s disease, thus focusing therapeutic options 
toward the inhibition of inflammatory factors as well as 
scavenging free radicals [135–137]. The pharmacological 
potential of diosgenin is well placed beyond reasonable 
doubt. Quite a credible number of in  vivo studies have 
shown the pharmacological potential of diosgenin to sig-
nificantly ameliorates decreased body weight caused by a 
compromised immune system during the diseased state 
and elevated stool. This amelioration is however due to 
the suppression of inflammation by diosgenin [138–140]. 
The activity of oxidant such as superoxide radical, oxy-
gen radical amidst others have been known to trigger 
the damage of tissues leading to the infiltration of neu-
trophils [141, 142]. This however leads to the secretion of 
myeloperoxidase which is transported within the cellular 
organelles to the suicide bag. The activation oof the neu-
trophils under duress are followed by the inflammation 
of the large intestine, which is however responsible for 
increased synthesis of reactive oxygen species [143]. As 
a result, the increased ROS synthesis following elevated 
MPO levels is responsible for inflammation attributed 
to Crohn’s disease [144, 145]. A very recent study by 
Wang et  al., (2018) [146] illustrated the anti-inflamma-
tory potential of diosgenin. Over the years, studies have 
stressed the link between oxidative stress (caused by an 
imbalance between oxidants and antioxidant synthesized 
in the body and the pathogenesis of inflammatory bowel 
diseases including Crohn’s [139, 140]. It was explained 

that the conversion of (O2−) to hydrogen peroxide leads 
to the disruption of intestinal membrane, causing injury 
to cells. However, this reaction can be reversed by glu-
tathione. Thus, sufficient glutathione levels are enough to 
avoid the onset of oxidative stress [147–149]. The reversal 
of lipid peroxidation by diosgenin is also worthy of nota-
ble mention [150, 151]. A correlation between the levels 
of multifunctional cytokines (inflammatory cytokines 
such as TNF-α, IL-1β, IL-6, and IFN-γ) and the patho-
genesis of Crohn’s via the inhibition of regulatory T-cell 
function and activation of T helper type 1 (Th1) cells 
[139–152]. However, it was observed that administration 
of diosgenin lead to the attenuation of these inflammatory 
cytokines thereby expressing its essential anti-inflamma-
tory potential in the management of Crohn’s diseases 
[146, 153]. The intrinsic or extrinsic cell death cascade is 
triggered follow the onset of Crohn’s diseases following 
the expression of Bax and Caspases-1 [154, 155]. How-
ever, investigation have reported the efficacy of diosgenin 
in inhibiting Bax and Caspases-1 induced apoptosis 
[156]. This was observed to be in accordance to the find-
ings of Raju et al. (2004) on diosgenin [157]. Although the 
management of IBD with herbal mixtures is beginning 
to gain prominence, the effectiveness of diosgenin have 
however been placed beyond reasonable doubts in clini-
cal research especially in the management of IBD. Several 
other pharmacological potentials of diosgenin have been 
include its anti-cancer effects, suppression of lipoxyge-
nase inhibition of CXCR3, and induction of Ca2+ release 
[158–160]. An essential factor in the regulation of genetic 
products are the signal transducer and activator of tran-
scription (STAT) family, playing important role in prolif-
eration and survival of cells. This factor (STAT) becomes 
activated via the upregulation of by Janus kinases (JAK), 
or the Src family kinases, thus allowing STAT to dimerize 
and translocate while binding to the promoters of target 
genes [161, 162].

Of this large family, STAT3 is the most linked family 
associated with the promotion of the pro-inflammatory 
cytokines as well as supporting the growth of malignant 
cells. This is done by upregulating NF-κB, a deleterious 
factor whose effect have been discussed in this section. 
Briefly, the NF-κB-regulated Interleukin 6 (IL6) binds 
to IL6 receptor which via interaction with few subunits 
leads to the activation of (STAT)3. This in return regu-
lates the activity of (SOCS) 3; essential in the suppression 
of cytokine activity [163, 164]. SOCS group of protein are 
involved in the negative feedback regulation of the JAK/ 
Src family kinases, thus invariably regulating the signal-
ing of STAT. The expression of SOCS3 have been found 
in IBD rat mode, thus suggesting a possible role in the 
pathogenesis of Crohn’s and Colitis [165, 166].The role of 
IL6/STAT3/SOCS3 in the regulation of homeostasis have 
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been well explained, as such the inflammation observed 
in Crohn’s disease is as a result of the striking imbal-
ance between SOCS3 expression and IL6/STAT3 signal-
ing [167, 168]. It is worthy to note, IL6/STAT3 signaling, 
including constitutive activation of STAT3, was found to 
generally mediate development and progression of colo-
rectal adenoma and carcinoma without inflammation 
in background [168, 169], in which IL6/STAT3 may be 
activated by microbial translocation through impaired 
mucosal barrier and function in physiological modula-
tion of mucosal immunity (Fig. 3).

The pharmacological significance of diosgenin on 
STAT3 phosphorylation was observed to be in correla-
tion with the repression of upstream c-Src, JAK1 and 
JAK2 protein kinases. Earlier investigation suggested 
that the role of Src and JAK1 kinase activities acts in 
synergy to regulate the constitutive activation of STAT3 
[170, 171]. However, the findings by Feng et  al., (2009) 

[172] suggested that diosgenin blocks the synergistic 
cooperation of Src and JAKs involved in tyrosyl phos-
phorylation of STAT3. Furthermore, the mechanism at 
which JAK2, mitogen-activated protein kinase, and Akt 
activates STAT3 activation have been explained before-
hand [173, 174]. Albeit, suppression of IL-6-induced Akt 
activation and nuclear translocation was pharmacologi-
cally mediated by diosgenin [172]. This however suggests 
that diosgenin exerts its pharmacological potential in 
quite diverse ways. While we have stated that diosgenin 
is capable of inactivating NF-kB, it was reported that 
STAT3 prolongs NF-kB retention via the actylation of 
acetyltransferase p300-mediated RelA acetyltransferase 
p300-mediated RelA [175]. Some glittering evidences 
also showed that diosgenin-triggered inhibition of STAT3 
activation is only possible via the recruitment of protein 
tyrosine phosphatase (PTP) [176, 177]. The biochemical 
significance of PTP can be properly read from studies by 

Fig. 3  Depicting the role of diosgenin in Crohn’s disease. The phosphorylation of 1 kb allows for the upregulation Nf-kb is kept upregulated by 
STAT3 and leads to the activation of inflammatory cytokines; a pre-requisite to Crohn’s disease. However, the administration of diosgenin blocks 
these reactions, thus preventing necrosis and cell death
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Servidei et  al., (1998) and Aggarwal et  al., (2009) [178, 
179]. While the stimulation of the expression of SH-
PTP2 protein leading to the downregulation of constitu-
tive STAT3 phosphorylation is clear, it is however safe to 
say that the diosgenin however possess a strong pharma-
cological basis that could be essential in the management 
of Crohn’s disease.

Conclusion & future perspective
The quest to provide therapeutic solutions to several 
medical conditions have been a cause of concern not only 
to the scientific community, but to human population at 
large. Scientists in the field of drug discovery and devel-
opment works round the clock to ensure that the may-
hem caused by this disease are put to check. Diosgenin is 
one of the major bioactive compounds found in Chinese 
yam. Several preclinical studies as regard its pharmaco-
logical activities against hypolipidemia, diabetes, cancer, 
inflammation, allergy, viral and fungal infection have 
been detailed. We observed that diosgenin inhibited TNF 
mediated NF-кB activation and its regulated genes prod-
ucts {c-Rel, RelA (p65), Rel B, NF-kB1 (p50 and p105) 
and NF-kB2 (p52)} in a dose dependent manner, thus it 
is potent in the management of Crohn’s diseases. While 
invivo studies has affirmed the efficacy of diosgenin, the 
challenge to conform invivo studies to human clinical 
trials still persists. The shift of focus to genetic approach 
in developing a therapeutic agents should be applauded. 
Although limited amount of translational research still 
remains a problem to contend with in the scientific com-
munity, future studies should endeavor to shed more 
light on the use of emerging technologies as a powerful 
agent in the development of Crohn’s diseases therapy.
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