World Health Organization. WHO manual for the standardized investigation and diagnosis of the infertile couple. Cambridge: Cambridge University Press; 2000. https://doi.org/10.1016/0968-8080(94)90122-8.
Book
Google Scholar
Sabanegh E, Agarwa A. Male infertility. In: Wein a, editor. Campbell-walsh urology. 10th ed. Philadelphia: Elsevier Saunders; 2011. p. 616–47. https://doi.org/10.1016/b978-1-4160-6911-9.00021-9.
Book
Google Scholar
Smith JF, Walsh TJ, Shindel AW, Turek PJ, Lauri HW, Patricia P, Katz P. Sexual, marital, and social impact of a man’s perceived infertility diagnosis. J Sex Med. 2009;6(9):2505–15. https://doi.org/10.1111/j.1743-6109.2009.01383.x.
Article
PubMed
PubMed Central
Google Scholar
Walsh TJ, Croughan MS, Schembri M, Chan JM, Turek PJ. Increased risk of testicular germ cell cancer among infertile men. Arch Intern Med. 2009;169(4):351–6. https://doi.org/10.1001/archinternmed.2008.562.
Article
PubMed
PubMed Central
Google Scholar
Wang YJ, Yan J, Yin F, Li L, Qin YG, Meng CY, Lu RF, Guo L. Role of autophagy in cadmium-induced testicular injury. Hum Exp Toxicol. 2017;36:1039–48. https://doi.org/10.1177/0960327116678300.
Article
CAS
PubMed
Google Scholar
Abd EA, Fahim AT, Sadik N, Ali BM. Resveratrol and curcumin ameliorate di-(2-ethylhexyl) phthalate induced testicular injury in rats. Gen Comp Endocrinol. 2016;225:45–54. https://doi.org/10.1016/j.ygcen.2015.09.006.
Article
CAS
Google Scholar
Daston GP, Cook JC, Kavlock RJ. Uncertainties for endocrine disrupters: our view on progress. Toxicol Sci. 2003;74:245–52. https://doi.org/10.1093/toxsci/kfg105.
Article
CAS
PubMed
Google Scholar
International Programme on Chemical Safety (IPCS), Nitrobenzene. Environmental Health Criteria 230. Geneva: WHO; 2003.
Google Scholar
Gulcin I, Mshvildadze V, Gepdiremen A, Elias R. Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera calchica: 3-O-(b-D-glucopyranosyl)-hederagenin. Phytother Res. 2006;20:130–4. https://doi.org/10.1002/ptr.1821.
Article
CAS
PubMed
Google Scholar
Koksal E, Gulcin I, Beyza S, Sarikaya O, Bursal E. In vitro antioxidant activity of silymarin. J Enzyme Inhib Med Chem. 2009;24(2):395–404. https://doi.org/10.1080/14756360802188081.
Article
CAS
PubMed
Google Scholar
Liu S, Manson JF, Lee IM, Cole SR, Hennekens CH, Willett WC, Buring JE, et al. Fruit and vegetable intake and risk of cardiovascular disease: the women’s health study. Am J Clin Nutr. 2000;72:922–8. https://doi.org/10.1093/ajcn/72.4.922.
Article
CAS
PubMed
Google Scholar
Rao AV, Gurfinkel DM. The bioactivity of saponins, triterpenoid and steroidal glycosides. Drug Metabol Drug Interact. 2000;17(1–4):211–35. https://doi.org/10.1515/dmdi.2000.17.1-4.211.
Article
CAS
PubMed
Google Scholar
Wu SJ, Lin YH, Chu CC, Tsai YH, Jane CJ. Curcumin or saikosaponin a improves hepatic antioxidant capacity and protects against CCl4-induced liver injury. J Med Food. 2008;11(2):224–9. https://doi.org/10.1089/jmf.2007.555.
Article
CAS
PubMed
Google Scholar
Yang H-L, Chen S-C, Chang N-W, Chang J-M, Lee M-L, Tsai P-C, et al. Protection from oxidative damage using Bidens pilosa extracts in normal human erythrocytes. Food Chem Toxicol. 2006;44:1513–21. https://doi.org/10.1016/j.fct.2006.04.006.
Article
CAS
PubMed
Google Scholar
Erasto P, Grierson DS, Afolayan AJ. Bioactive sesquiterpenes lactones from the leaves of V. amygdalina. J Ethnopharmacol. 2006;106:117–20. https://doi.org/10.1016/j.jep.2005.12.016.
Article
CAS
PubMed
Google Scholar
Izeybigie EB. Discovery of water solubleanticancer agents (Edotides) from a vegetable found in Benin City. Nigeria Exper Bio Med. 2003;228:293–9. https://doi.org/10.1177/153537020322800308.
Article
Google Scholar
Cimanga RK, Tona L, Mesia K, Musuamba CT, De Bruyne T, Apers S, Hernan N, Miert VS, Pieters L, Totte J, Vlietink AJ. In vitro antiplasmodia acivity of extravts and fractions of seven medicinal plants used in the democratic republic of Congo. J Ethnopharmacol. 2004;93:27–32. https://doi.org/10.1016/j.jep.2004.02.022.
Article
PubMed
Google Scholar
Muraina IA, Adaudi AO, Mamman M, Kazeem HM, Picard J, McGaw LJ, Eloff JN. Antimycoplasmal activity of some plant species from northern Nigeria compared to the currently used therapeutic agent. Pharm Biol. 2010;48:1103–7. https://doi.org/10.3109/13880200903505633.
Article
CAS
PubMed
Google Scholar
Iwu MW, Duncan AR, Okunji CO. New antimicrobials of plant origin. In: Janick J, editor. Perspectives on new crops and new uses. Alexandria: ASHS Press; 1999.
Google Scholar
Igile GO, Oleszek W, Jurzysta M, Burda S, Fafunso M, Fasanmade AA. Flavonoids from V. amygdalina and their antioxidant activities. J Agric Food Chem. 1994;42:2445–8. https://doi.org/10.1021/jf00047a015.
Article
CAS
Google Scholar
Adesanoye OA, Farombi EO. Hepatoprotective effects of V. amygdalina (Astereaceae) in rats treated with carbon tetrachloride. Exp Toxicol Pathol. 2010;62:197–206. https://doi.org/10.1016/j.etp.2009.05.008.
Article
PubMed
Google Scholar
Ibrahim G, Abdurahman EM, Ibrahim H, Ibrahim NO. Comparative cytomormological studies on the studies of V. amygdalina Del. and V. Kotschyama. Nig J Botany. 2010;23(1):133–42.
Google Scholar
Adiukwu CP, Agaba A, Nambatya G. Pharmacognostic, antiplasmodial and antipyretic evaluation of the aqueous extract of V. amygdalina leaf. Int J Biol Chem Sci. 2011;5(2):709–16. https://doi.org/10.4314/ijbcs.v5i2.72134.
Article
Google Scholar
Okokon JE, Onah MI. Pharmacological studies on root extract of V. amygdalina. Nig J Prod Med. 2004;8:59–61. https://doi.org/10.4314/njnpm.v8i1.11818.
Article
Google Scholar
Kaoul AM, Mahiou-Leddet V, Hutter S, Ainouddine S, Hassani S, Yahaya I, Azas N, Olliver E. Antimalarial activity of crude extracts from nine African medicinal plants. J Ethnopharmacol. 2008;116:74–83. https://doi.org/10.1016/j.jep.2007.11.001.
Article
Google Scholar
Magboul AZI, Bashir AK, Khalid SA, Farouk A. Anti-microbial activity of vernolein and vernodalin. Fitoterapia. 1997;68:83–4.
CAS
Google Scholar
Tona L, Cimanga RK, Mesia K, Apers S. In vitro anti-plasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. J Ethnopharmaco. 2004;l93:27–32. https://doi.org/10.1016/j.jep.2004.02.022.
Article
Google Scholar
Oladunmoye MK, Afolami OI, Oladejo BO, Amoo IA, Osho BI. Identification and quantification of bioactive compounds present in the plant Vernonia amygdalina Delile using GC-MS technique. Nat Prod Chem Res. 2019;7:356. https://doi.org/10.4172/2329-6836.1000356.
Article
Google Scholar
National Research Council (NRC). Guide for the care and use of laboratory animals. 8th ed: The National Academies Press; 2011. https://doi.org/10.17226/12910.
Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.
CAS
Google Scholar
Varshney R, Kale RK. Effect of calmodulin antagonist on radiation induced lipid peroxidation in microsomes. Int J Radiat Biol. 1990;58:733–43. https://doi.org/10.1080/09553009014552121.
Article
CAS
PubMed
Google Scholar
Buetler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–8. https://doi.org/10.1097/00003072-199111000-00028.
Article
Google Scholar
Parandin R, Rohani SA. Effects of oil extract of Ocimum gratissimum leaves on the reproductive function and fertility of adult male rats. J Appl Biol Sci. 2010;4(2):1–4.
Google Scholar
Dalsenter PR, Faqi AS, Chahoud I. Serum testosterone and sexual behavior in rats after prenatal exposure to lindane. Bull Environ Contam Toxicol. 1997;59:360–6. https://doi.org/10.1007/s001289900486.
Article
CAS
PubMed
Google Scholar
Colborn T, Vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101:378–84. https://doi.org/10.1289/ehp.93101378.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Kashoury AA, Afrah F, Salama AF, Adel I, Selim AI, Mohamed RA. 2010. Chronic exposure of Dicofol promotes reproductive toxicity in male rats. Life Sci J. 2010;7(3):5–19. https://doi.org/10.1016/j.reprotox.2009.10.003.
Article
CAS
Google Scholar
Brown MA, Casida JE. Metabolism of a dicofol impurity alpha-chloro-DDT, but not dicofol or dechlorodicofol, to DDE in mice and a liver microsomal sytem. Xenobiotica. 1987;17:1169–74. https://doi.org/10.3109/00498258709167409.
Article
CAS
PubMed
Google Scholar
Jadaramkunti UC, Kaliwal BB. Dicofol formulation induced toxicity on tests and accessory reproductive organs in albino rats. Bull Environ Contam Toxicol. 2002;69:741–8. https://doi.org/10.1007/s00128-002-0123-5.
Article
CAS
PubMed
Google Scholar
Mann T. Secretory function of the prostate, seminal vesicle and other male accessory organs of reproduction. J Reprod Fertil. 1974;37:179–88. https://doi.org/10.1530/jrf.0.0370179.
Article
CAS
PubMed
Google Scholar
Mathur PP, Chattopadhyay S. Involvement of lysosomal enzymes in flutamide-induced stimulation of rat testis. Andrologia. 1982;14:171–6. https://doi.org/10.1111/j.1439-0272.1982.tb03120.x.
Article
CAS
PubMed
Google Scholar
Prasad RS, Vijayan E. A new non-hormonal antifertility drug DL-204. I- effects on testes and accessory glands of reproduction in male rats. Contraception. 1987;36(5):557–66. https://doi.org/10.1016/0010-7824(87)90008-4.
Article
CAS
PubMed
Google Scholar
Gornall AG, Goldbery DM. Hepatobiliary disorders. In: Allan G, editor. Applied Biochemistry of Clinical Disorders. Hagerstown: Gornall, Inc. Virginia Venue; 1980. p. 164–92.
Google Scholar
Robinson WF, Huntable CR. Clinicopathological principles for veterinary medicine. New York: Cambridge Univ. Press; 1988.
Book
Google Scholar
Mably TA, Bjerke DL, Moore RW, Gerndron FA, Peterson RW. In utero and lactation exposure of male rats to 2, 3, 7, 8 tetrachloro dibenzo-p-dioxin. Toxicol Appl Pharmacol. 1992;114:118–26. https://doi.org/10.1016/0041-008x(92)90103-y.
Article
CAS
PubMed
Google Scholar
Hill RN, Erdreich LS, Paynter OE, Roberts PA, Rosenthal SL, Wilkinson CF. Thyroid follicular cell carcinogenesis. Fundam Appl Toxicol. 1989;12:629–97. https://doi.org/10.1093/toxsci/12.4.629.
Article
CAS
PubMed
Google Scholar
Capen CC. Toxic responses of the endocrine system. In: Klaassen CD, editor. Casarett and Doull's toxicology : the basic science of poisons. New York: McGraw-Hill; 1996. p. 617–40. https://doi.org/10.1016/s0378-4274(96)90054-5.
Chapter
Google Scholar
Maran RR, Aruldhas MM. Adverse effects of neonatal hypothyroidism on Wistar rat spermatogenesis. Endocr Res. 2002;28(3):141–54. https://doi.org/10.1081/erc-120015051.
Article
CAS
PubMed
Google Scholar
Mendis-Handagama SM, Siril-Ariyaratne HB. Leydig cells, thyroid hormones and steroidogenesis. Indian J Exp Biol. 2005;43:939–62.
CAS
PubMed
Google Scholar
Wagner MS, Wajner SM, Maia AL. The role of thyroid hormone in testicular development and function. J Endocrinol. 2008;199:351–65. https://doi.org/10.1677/joe-08-0218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddox PR, Jones DL, Mansel RE. Basal prolactin and total lactogenic hormone levels by microbioassay and immunoassay in normal human sera. Acta Endocrinol. 1991;125(6):621–7. https://doi.org/10.1530/acta.0.1250621.
Article
CAS
PubMed
Google Scholar
Gonzalez ER. Hyperprolactinemia: still perplexing but eminently treatable. JAMA. 1979;242(5):401–2. https://doi.org/10.1001/jama.1979.03300050003001.
Article
CAS
PubMed
Google Scholar
Tolis G. Prolactin: physiology and pathology. Hospital Practice. 1980;15(2):85–95. https://doi.org/10.1080/21548331.1980.11946556.
Article
CAS
PubMed
Google Scholar
Balagura S, Frantz AG, Housepian EM, Carmel PW. The specificity of serum prolactin as a diagnostic indicator of pituitary adenoma. J Neurosurg. 1979;51(1):42–6. https://doi.org/10.3171/jns.1979.51.1.0042.
Article
CAS
PubMed
Google Scholar