- Short communication
- Open Access
- Published:
Antiglycation potential of Indigoferin a, Indigoferin B and Indigoferin C natural products from Indigofera heterantha Brandis
Clinical Phytoscience volume 7, Article number: 5 (2021)
Abstract
Background
Diabetes is a long-lasting and serious disease that effect in worldwide individual lives, families, and societies. Hyperglycemia of diabetes mellitus produced Advance Glycation End Products that are associated with diabetic complications like neuropathy, nephropathy, retinopathy, and cardiovascular diseases.
Methods
In this study, the natural products isolated from of Indigofera heterantha Brandis, Indigoferin A (S1), Indigoferin B (S2) and Indigoferin C (S3) were evaluated for their in vitro antiglycation activity.
Results
The compounds exhibited a significant inhibitory activity against the formation of Advanced Glycation End-Products with IC50 values of 674.25 ± 3.2 μM, 407.03 ± 4.7 μM and 726.41 ± 2.1 μM, respectively. Here, important structure-activity relationship was observed, when the intramolecular hydrogen bonding interactions suppressed the antiglycation activity of compound S3. Thus, the study clearly demonstrates that the number and the position of substituents act as an assisting factor and directly influence the inhibitory activity of the natural product by altering the sugar or protein binding affinity.
Conclusions
This study explain first time the antiglycation inhibitory ability of chemical constituents isolated from I. heterantha and can be used for above late diabetic complications.
Introduction
Indigofera heterantha Brandis (I. heterantha) belong to family Fabaceae, is a small tree or shrub widely distributed in tropical and subtropical regions with pinnate leaves. The name Indegofera is due to the presence of indigo flowers in most of the species of this family. The plants of this genus have many important medicinal properties, thus are widely used as folk medicine for the treatment of whooping cough, hepatitis [1], and tooth ache [2]. Previous studies showed that compounds isolated from of this genus act as an excellent anti-inflammatory agent specially for snake bite or insect sting, possess good antimicrobial, antifungal [3], antibacterial [4], and urease inhibitory activities [5]. Due to several important medicinal properties exhibited by the compounds isolated from the I. heterantha, it was envisioned to investigate the natural products isolated from this specie for their in vitro antiglycation potential. The antiglycation activity of natural products from I. heterantha have not been explored previously, which make them interesting candidates for investigation into their diverse biological properties.
Diabetes mellitus causes high blood sugar level leading to a condition commonly termed as hyperglycemia [6]. Hyperglycemia when persist for longer period of time facilitates the synthesis of special non-enzymatic glycated products called Advance Glycation End Products (AGEs) [7]. Previous studies have revealed a positive association between tissue AGEs and microvascular as well as macrovascular complications related to diabetes [8], with glucose acting as a long-term fuel for diabetic complications [9]. Several factors contribute towards the development of AGEs including the duration and the degree of hyperglycemia, tissues permeability to free blood glucose, and protein’s half-life [10]. AGEs through crosslinking cellular matrix of long-lived proteins alter the tissue function and mechanical properties [11] resulting in onset of late diabetic complications like neuropathy, nephropathy, retinopathy, and cardiovascular diseases.
Currently various pharmacological and natural antiglycating agents have been under investigation to prevent the formation of AGEs. These include aminoguanidine, rutin (Fig. 1), pyridoxamine, antioxidants, aspirin, and RAGE blockers. Several synthetic compounds and plant extracts have also shown significant antiglycation activity [12]. Aged garlic extract exhibited excellent antiglycation activity in vitro [13]. Polysaccharide fractions extracted from pumpkin and Punica granatum have also been reported as good inhibitors for glycation [14, 15].
The current study describes the antiglycation activities of three natural compounds indigoferin A (S1), indigoferin B (S2) and indigoferin C (S3, Fig. 2) isolated from I. heterantha [5]. The detailed extraction and isolation has been published, while the compounds had been characterized based on 1D and 2D NMR data. This is the first report on the antiglycating activity of these compounds.
Structures of compounds isolated from I. heterantha [5]
Materials and method
Chemicals and reagents
Precoated aluminum sheets and silica gel 60F-254 were purchased from E. Merck. All solvents, such as methanol (HPLC grade), n-hexane (HPLC grade), chloroform (HPLC grade), ethyl acetate (HPLC grade), n-butanol (HPLC grade) and cerric sulphate reagent (laboratory grade) were purchased from Sigma-Aldrich. Chemicals including dimethylsulfoxide (DMSO, analytical grade), glucose anhydrous (laboratory grade), disodium hydrogen phosphate (Na2HPO4, laboratory grade), sodium azide (NaN3, laboratory grade) and sodium dihydrogen phosphate (NaH2PO4, laboratory grade), methylglyoxal (MG, laboratory grade) were purchased from Sigma-Aldrich, while bovine serum albumin (BSA, laboratory grade) was purchased from Research Organics, Cleveland (USA).
Plant material
I. heterantha Wall were collected from upper Dir, Khyber Pakhtunkhwa (Pakistan), during the month of April 2005. The plant was identified by Prof. Dr. Jahandar Shah, plant taxonomist, University of Malakand, Chakdara. The voucher specimen number GI-014 was placed in the herbarium of botany department, University of Malakand, Chakdara, Dir (L), Pakistan.
Extraction and isolation
The detail extraction and isolation of these compounds Indigoferin A (S1), Indigoferin B (S2) and Indigoferin C (S3) from I. heterantha were published in our previous article [5]. The collected I. heterantha Wall (10 kg) was shade dried for 3 weeks, followed by pulverization into fine powder, then soaked in MeOH (80% v/v) with rare stirring at room temperature. After 2 weeks, the material was filtered 3 times and the filtrate obtained was concentrated in vauco at 40 °C. The MeOH extract (463.5 g) obtained was then suspended in distilled water and extracted with n-hexane (20.71% w/w), chloroform (15.96% w/w), ethyl acetate (12.94% w/w), and n-butanol (19.41% w/w), and finally the aqueous (30.96% w/w) fraction was obtained. Each organic extract was then evaporated to dryness.
In vitro Antiglycation assay
Buffer was prepared by mixing a calculated amount of Na2HPO4 and NaH2PO4 along with NaN3, for preventing the bacterial interactions and pH was maintained at 7.4 with concentrations 67 mM and 3 mM respectively. BSA (10 mg/mL) and MG (50 mg/mL) solutions were prepared in buffer while test samples (1 mM/mL) were prepared in DMSO. In vitro antiglycation activity was performed according to the reported method [16] with few modifications. The samples (S1, S2 and S3) were prepared in DMSO at 1 mM concentration. For IC50 serial dilutions were used. Triplicate samples, in a 96-well plate assay each well having a reaction mixture of 200 μL, a glycated control containing 20 μL of test compound solution, 50 μL of BSA, 50 μL of MG, and 80 μL of phosphate buffer, while blank control containing 20 μL of DMSO was incubated for 9 days maintaining the temperature at 37 °C. After incubation assessment of fluorescence (excitation at 330 nm and emission at 440 nm) for the change in fluorescence intensity was evaluated using microplate ELISA reader, Spectra Max Plus384 (Molecular Devices, CA, USA) at 37 °C. The percentage inhibition for each compound was calculated by using formula.
Rutin (Fig. 1) is used as a positive control with IC50 value of 294.5 ± 1.5 μM.
Statistical analysis
S.E.M = IC50 value was presented as mean ± S.E.M (standard error of the mean) calculated by using the formula
Where s = sample standard deviation
xi − xn = sample data set
x = mean value of sample data
Results and discussion
Extraction and isolation
Compounds Indigoferin A (S1) (89 mg), Indigoferin B (S2) (105 mg) and Indigoferin C (S3) (145 mg) were isolated as black gummy solid, brown powder and yellow amorphous powder, respectively from the ethyl acetate fraction of the methanolic extracts of I. heterantha. The detail spectroscopic data of all these compounds were published in our previous article [5]. On the basis of spectroscopic data, the structures of all compounds were determined as Indigoferin-A [(6-methyl-1 -(4-((2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yloxy)phenyl)heptan-1-one)], Indigoferine-B, (2R,3R,4R,5R,6S)-2-(hydroxymethyl)-6-(4-(5-methylhexyl)phenoxy)tetrahydro-2H-pyran-3,4,5-triol and Indigoferin-C 6-hydroxy-1-2-(2,46-trihydroxyphenyl)heptan-1-one.
In vitro Antiglycation activity
To explore the medicinal importance of compounds from I. heterantha, the compounds Indigoferin A (S1), Indigoferin B (S2) and Indigoferin C (S3) were evaluated for their in vitro antiglycation potential. Here, all three natural products were found to be significantly active with IC50 values of 674.25 ± 3.2 μM, 407.03 ± 4.7 μM and 726.41 ± 2.1 μM, respectively albeit lower in potency than the standard rutin (Table. 1). Although the potency of S1, S2, and S3 are lower than the standard but are potent to show inhibitory effect. The difference potential is attributed to the structural differences in compounds and the standard rutin, whereas rutin is a disaccharide with a α-substituted chromen-4-one (with hydroxyl and phenyl substituents), while S1 and S2 are monosaccharides with β-phenyl substituents, while S3 lacks the sugar moiety. The compound S2 (407.03 ± 4.7 μM) was identified to possess better inhibitory potential compared to the other two natural products S1 and S3. While the compound S3 (726.41 ± 2.1 μM) was found to be the least active among the isolated natural products, which could be attributed to the intramolecular hydrogen bonding between the ortho substituted hydroxyl group and the carbonyl oxygen (Fig. 3). The unavailability of hydroxyl group to interact via intermolecular hydrogen bonding with the protein can be the contributing factor to the lower potency of the natural product S3. The suppressing influence of intramolecular hydrogen bonding on activity of synthetic compounds was previously published [17] for synthetic compounds but the phenomenon was first time discussed for natural compounds.
The comparison of inhibitory potential of S1 (674.25 ± 3.2 μM) and S2 (407.03 ± 4.7 μM) shows a significant difference (Fig. 4), which can be due to the structural differences between the two compounds. Here, the lower inhibitory potential of S1 could be due to the presence of carbonyl group, which extends resonance creating a dominant electron withdrawing effect (Fig. 3) [17, 18]. However, S2 has significant antiglycation activity due to absence of carbonyl group and multiple hydroxyl groups [18, 19]. Thus, the substituent and its position remarkably effect the protein or sugar binding activity of each analogue.
Additionally, it was observed that the presence of sugar moiety and its stereochemistry also influences the antiglycation potential of compounds. The absence of sugar moiety in S3 could be another contributing factors towards the lower inhibitory potential of S3 compared to the other two compounds with sugar moiety. While the comparison of S1 and S2 clearly exhibit the influence of the stereochemistry of sugar moiety upon antiglycation activity of these compounds. Here, the S1 with mannose sugar moiety has lower inhibitory potential than S2, while the change of stereochemistry at position 3 and 4 of sugar moiety in S2 led to the better inhibitory potential against glycation (Fig. 2). The hydroxyl at position 3 and 4 of the sugar moiety could be involved in facilitating the hydrogen bonding interactions of hydroxyls with the binding site [17,18,19]. Overall, this study provides a useful insight into the structure-activity relationship and antiglycation potential of natural products from I. heterantha.
Conclusion
Here, we report for the first time the antiglycation inhibitory ability of natural products isolated from I. heterantha. The study explains the influence of the stereochemistry of sugar moiety, the availability of hydroxyl groups for hydrogen bonding interactions with the binding site, and the influence of electron withdrawing resonance effect upon antiglycation potential of the natural products. The compounds exhibit different extent of potential influenced by the number and the position, and the stereochemistry of hydroxyl substituents and influenced their inhibitory activity. Additionally, compound S2 could be utilized as the starting point for structure-activity relationship studies aimed at designing potent antiglycating agent.
Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Hussain F, Islam M, Zaman A. Ethnobotanical profile of plants of Shawar Valley, district swat, Pakistan. Int J Biol Biotechnol. 2006;3(2):301–7.
Purkayastha SK. A manual of Indian timbers: Sribhumi publishing Compnay; 1997.
Dahot MU. Antibacterial and antifungal activity of small protein of Indigofera oblongifolia leaves. J Ethnopharmacol. 1999;64(3):277–82.
Vijayan M, Jacob K, Govindaraj Y. Antibacterial activity and mutagenicity of leaves of Indigofera tinctoria Linn. J Exp Integr Med. 2012;2(3):263–9.
Tariq SA, Ahmad MN, Khan A, Choudhary MI, Ahmad W, Ahmad M. Urease inhibitors from Indigofera gerardiana wall. J Enzyme Inhib Med Chem. 2011;26(4):480–4.
Miyata T. New aspects in the pathogenesis of dialysis-related amyloidosis: pathophysiology of advanced glycation end products in renal failure. Nihon Jinzo Gakkai Shi. 1996;38(5):191–7.
Schmidt AM, Du Yan S, Stern DM. The dark side of glucose. Nat Med. 1995;1(10):1002–4.
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.
Peppa M, Uribarri J, Vlassara H. Glucose, advanced glycation end products, and diabetes complications: what is new and what works. Clin Diabetes. 2003;21(4):186–7.
Furth A. Glycated proteins in diabetes. Br J Biomed Sci. 1997;54(3):192–200.
Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318(20):1315–21.
Khan A, Khan A, Farooq U, Taha M, Shah SAA, Halim SA, Akram A, Khan MZ, Jan AK, Al-Harrasi A. Oxindole-based chalcones: synthesis and their activity against glycation of proteins. Med Chem Res. 2019;28(6):900–6.
Ahmad MS, Pischetsrieder M, Ahmed N. Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation endproducts. Eur J Pharmacol. 2007;561(1):32–8.
Wang X, Zhang L-S, Dong L-L. Inhibitory effect of polysaccharides from pumpkin on advanced glycation end-products formation and aldose reductase activity. Food Chem. 2012;130(4):821–5.
Rout S, Banerjee R. Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum. Bioresour Technol. 2007;98(16):3159–63.
Ahmed N. Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67(1):3–21.
Taha M, Naz H, Rasheed S, Ismail NH, Rahman AA, Yousuf S, Choudhary MI. Synthesis of 4-methoxybenzoylhydrazones and evaluation of their antiglycation activity. Molecules. 2014;19(1):1286–301.
Liu H, Wang C, Qi X, Zou J, Sun Z. Antiglycation and antioxidant activities of mogroside extract from Siraitia grosvenorii (Swingle) fruits. J Food Sci Technol. 2018;55(5):1880–8.
Yeh W-J, Hsia S-M, Lee W-H, Wu C-H. Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings. J Food Drug Anal. 2017;25(1):84–92.
Acknowledgements
We acknowledge Higher Education Commission (HEC) of Pakistan, COMSATS University Islamabad Abbottabad Campus and HEJ Research Institute of Chemistry, University of Karachi for support.
Funding
Not Applicable.
Author information
Authors and Affiliations
Contributions
AK and UF conceived and designed the study. Ayesha K. performed antiglycation activity. MA and M. Ali performed isolation, and FAH and SMB analyzed the data. AK and Ayesha K. wrote the manuscript with inputs and comments from all co-authors. All authors have read and approved the final version of the manuscript.
Corresponding authors
Ethics declarations
Ethics approval and consent to participate
Not Applicable.
Consent for publication
Not Applicable.
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Khan, A., Khan, A., Ahmad, M. et al. Antiglycation potential of Indigoferin a, Indigoferin B and Indigoferin C natural products from Indigofera heterantha Brandis. Clin Phytosci 7, 5 (2021). https://doi.org/10.1186/s40816-020-00238-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s40816-020-00238-0
Keywords
- Indigofera heterantha Brandis
- Advanced Glycation end-products
- Antiglycation activity