Billah MM, Nawrin K, Ahmed KT, Jabed MSU, Islam MN, Uddin MM. GABA mediated response of aqueous, ethanol and ethyl acetate extracts of Dicranopteris linearis leaf in Swiss albino mice. J Herbmed Pharmacol. 2015;5(1):1–6 http://www.herbmedpharmacol.com/Article/JHP_20151203110517 (accessed 7 Jul 2020).
Google Scholar
Sarker SK, Hossain ABME. Pteridophytes of greater Mymensingh District of Bangladesh used as vegetables and medicines. Bangladesh J Plant Taxon. 1970;16(1):47–56. https://doi.org/10.3329/bjpt.v16i1.2746.
Article
Google Scholar
Hussaini J, Othman NA, Abdulla MA, Majid NA, Faroq HM, Ismail S. Gastroprotective effects of Dicranopteris linearis leaf extract against ethanol-induced gastric mucosal injury in rats. SRE. 2012;7(18):1761–7. https://doi.org/10.5897/SRE11.775.
Article
Google Scholar
Zakaria, Z. A.; Abdul Ghani, Z. D. F., Raden Mohd Nor, R. N. S.; Gopalan, H. K.; Sulaiman, M. R.; Abdullah, F. CAntinociceptive and anti-inflammatory activities of Dicranopteris linearis leaves chloroform extract in experimental animals. Yakugaku Zasshi 2006, 126 (11), 1197–1203. DOI: https://doi.org/10.1248/yakushi.126.1197.
Ismail NA, Shamsahal-Din NS, Mamat SS, Zabidi Z, Wan Zainulddin W-N, Kamisan FH, Yahya F, Mohtarrudin N, Mohd-Desa MN, Zakaria ZA. Effect of aqueous extract of Dicranopteris linearis leaves against Paracetamol and carbon tetrachloride-induced liver toxicity in rats. Pak J Pharm Sci. 2014;27(4):831–5.
PubMed
Google Scholar
Lai HY, Lim YY, Tan SP. Antioxidative, Tyrosinase inhibiting and antibacterial activities of leaf extracts from medicinal ferns. Biosci Biotechnol Biochem. 2009;73(6):1362–6. https://doi.org/10.1271/bbb.90018.
Article
CAS
PubMed
Google Scholar
Zakaria ZA, Mohamed AM, Jamil NSM, Rofiee MS, Somchit MN, Zuraini A, Arifah AK, Sulaiman MR. In vitro cytotoxic and antioxidant properties of the aqueous, chloroform and methanol extracts of Dicranopteris linearis leaves. AJB. 2010;10(2):273–82. https://doi.org/10.5897/AJB10.423.
Article
Google Scholar
Zakaria ZA, Sodri NH, Hassan H, Anuar K, Abdullah FC. Effects of various receptor antagonists on the peripheral Antinociceptive activity of aqueous extracts of Dicranopteris linearis, Melastoma malabathricum and Bauhinia purpurea leaves in mice. CELLMED. 2012;2(4):38.1–6. https://doi.org/10.5667/tang.2012.0017.
Article
Google Scholar
Fisher A, Brandeis R, Bar-Ner RHN, Kliger-Spatz M, Natan N, Sonego H, Marcovitch I, Pittel Z. AF150(S) and AF267B: M1 muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci. 2002;19(1–2):145–53. https://doi.org/10.1007/s12031-002-0025-3.
Article
CAS
PubMed
Google Scholar
Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dubé S, Mallinckrodt C, Bymaster FP, McKinzie DL, Felder CC. Selective muscarinic receptor agonist Xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry. 2008;165(8):1033–9. https://doi.org/10.1176/appi.ajp.2008.06091591.
Article
PubMed
Google Scholar
Moniruzzaman M, Atikur Rahman M, Ferdous A. Evaluation of Sedative and Hypnotic Activity of Ethanolic Extract of Scoparia dulcis Linn https://www.hindawi.com/journals/ecam/2015/873954/ (accessed 7 Jul 2020). https://doi.org/10.1155/2015/873954.
Hafiz W, Zilani MNH, Sultana NA, Isalm MM, Anisuzzman M, Hossain MG. Neuropharmacological Potential of Ceriscoides turgida (Roxb.) Leaf and Root in Mice. Clinical Phytoscience. 2019;5(1):5. https://doi.org/10.1186/s40816-019-0099-x.
Article
Google Scholar
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Collection: Reports funded by National Institutes of Health. Washington (DC): National Academies Press (US); 2011.
Google Scholar
Rd P, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977;229(2):327–36.
Google Scholar
Benneh CK, Biney RP, Adongo DW, Mante PK, Ampadu FA, Tandoh A, Jato J, Woode E. Anxiolytic and antidepressant effects of Maerua angolensis DC. Stem Bark Extract in Mice. Depress Res Treat. 2018;2018:1537371. https://doi.org/10.1155/2018/1537371.
Article
PubMed
PubMed Central
Google Scholar
Raja DP, Manickam VS, de Britto AJ, Gopalakrishnan S, Ushioda T, Satoh M, Tanimura A, Fuchino H, Tanaka N. Chemical and Chemotaxonomical studies on Dicranopteris species. Chem Pharm Bull. 1995;43(10):1800–3. https://doi.org/10.1248/cpb.43.1800.
Article
CAS
Google Scholar
Zakaria ZA. Free radical scavenging activity of some plants available in Malaysia. Iran J Pharmacol Ther. 2007;6(1):87–0.
Google Scholar
Pauleti NN, Mello J, Siebert DA, Micke GA, de Albuquerque CAC, Alberton MD, Barauna SC. Characterisation of phenolic compounds of the ethyl acetate fraction from Tabernaemontana catharinensis and its potential antidepressant-like effect. Nat Prod Res. 2018;32(16):1987–90. https://doi.org/10.1080/14786419.2017.1359167.
Article
CAS
PubMed
Google Scholar
Messaoudi M, Bisson J-F, Nejdi A, Rozan P, Javelot H. Antidepressant-like effects of a cocoa Polyphenolic extract in Wistar-Unilever rats. Nutr Neurosci. 2008;11(6):269–76. https://doi.org/10.1179/147683008X344165.
Article
PubMed
Google Scholar
Lin S, Zhou Z, Zhang H, Yin W. Phenolic glycosides from the rhizomes of Cyperus rotundus and their antidepressant activity. J Korean Soc Appl Biol Chem. 2015;58(5):685–91. https://doi.org/10.1007/s13765-015-0092-0.
Article
CAS
Google Scholar
German-Ponciano, L. J.; Rosas-Sánchez, G. U.; Rivadeneyra-Domínguez, E.; Rodríguez-Landa, J. F. Advances in the Preclinical Study of Some Flavonoids as Potential Antidepressant Agents https://www.hindawi.com/journals/scientifica/2018/2963565/ (accessed 7 Jul 2020). DOI: https://doi.org/10.1155/2018/2963565.
Chen Y, Han T, Qin L, Rui Y, Zheng H. Effect of total triterpenes from Centella asiatica on the depression behavior and concentration of amino acid in forced swimming mice. Zhong Yao Cai. 2003;26(12):870–3.
PubMed
Google Scholar
Zhou Y, Shen Y-H, Zhang C, Su J, Liu R-H, Zhang W-D. Triterpene Saponins from Bacopa monnieri and their antidepressant effects in two mice models. J Nat Prod. 2007;70(4):652–5. https://doi.org/10.1021/np060470s.
Article
CAS
PubMed
Google Scholar
Khisti RT, Chopde CT, Jain SP. Antidepressant-like effect of the Neurosteroid 3alpha-Hydroxy-5alpha-Pregnan-20-one in mice forced swim test. Pharmacol Biochem Behav. 2000;67(1):137–43. https://doi.org/10.1016/s0091-3057(00)00300-2.
Article
CAS
PubMed
Google Scholar
Rodrìguez-Landa JF, Contreras CM, Bernal-Morales B, Gutièrrez-Garcìa AG, Saavedra M. Allopregnanolone Reduces Immobility in the Forced Swimming Test and Increases the Firing Rate of Lateral Septal Neurons through Actions on the GABAA Receptor in the Rat. J. Psychopharmacol. (Oxford). 2007;21(1):76–84. https://doi.org/10.1177/0269881106064203.
Article
Google Scholar
Adongo DW, Kukuia KKE, Mante PK, Ameyaw EO, Woode E. Antidepressant-like effect of the leaves of Pseudospondias microcarpa in mice: evidence for the involvement of the serotoninergic system, NMDA receptor complex, and nitric oxide pathway. Biomed Res Int. 2015;2015:397943. https://doi.org/10.1155/2015/397943.
Article
CAS
PubMed
PubMed Central
Google Scholar
Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology. 1995;121(1):66–72. https://doi.org/10.1007/BF02245592.
Article
CAS
PubMed
Google Scholar
Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I. Serotonergic mediation of the effects of fluoxetine, but not Desipramine, in the rat forced swimming test. Psychopharmacology. 1999;147(2):162–7. https://doi.org/10.1007/s002130051156.
Article
CAS
PubMed
Google Scholar
Rénéric JP, Lucki I. Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test. Psychopharmacology. 1998;136(2):190–7. https://doi.org/10.1007/s002130050555.
Article
PubMed
Google Scholar
Carr GV, Lucki I. The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology. 2011;213(2–3):265–87. https://doi.org/10.1007/s00213-010-2097-z.
Article
CAS
PubMed
Google Scholar
Berrocoso E, Ikeda K, Sora I, Uhl GR, Sánchez-Blázquez P, Mico JA. Active Behaviours produced by antidepressants and opioids in the mouse tail suspension test. Int J Neuropsychopharmacol. 2013;16(1):151–62. https://doi.org/10.1017/S1461145711001842.
Article
CAS
PubMed
Google Scholar
Tsuji R, Isobe N, Kawasaki H. Mechanism of prolongation of pentobarbital-induced sleeping time by Empenthrin in mice. Toxicology. 1996;108(3):185–90. https://doi.org/10.1016/0300-483x(95)03298-t.
Article
CAS
PubMed
Google Scholar