Skip to main content

International Journal of Phytomedicine and Phytotherapy

Fig. 8 | Clinical Phytoscience

Fig. 8

From: Differential expression of gluconeogenic enzymes in early- and late-stage diabetes: the effect of Citrullus colocynthis (L.) Schrad. Seed extract on hyperglycemia and hyperlipidemia in Wistar-Albino rats model

Fig. 8

The effect of CCAE on the course of events in ET2D (blue boxes) and LT2D (black boxes). Low FA β-oxidation/disposal may give rise to the fatty liver when accompanied by increased DNL, as it may occur in ET2D. Enhanced β-oxidation of FAs is expected to prevent fatty liver unless the rate of FA entry into the liver overwhelms the capacity of the mitochondria, as it may occur in LT2D, when it may lead to mitochondrial dysfunction and enhanced ROS production. Meanwhile, the attenuation of free radical scavenging mechanisms would lead to fatty liver, oxidative stress, fibrosis, and liver damage. CCAE was able to fight against hyperglycemia and fatty liver in many frontlines, including free radical scavenging and lowering ROS levels, inhibiting CPT1, activating the expression of PPARα, and directing PEPCK activity more towards glyceroneogenesis than towards gluconeogenesis. Another vital function of PEPCK, not shown here, is to carry out cataplerosis, the removal of citric acid cycle intermediates to prevent their accumulation in the mitochondrial matrix [66, 88]

Back to article page