Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung. 2014;101(4):408–20. https://doi.org/10.1556/APhysiol.101.2014.4.2.
Article
CAS
PubMed
Google Scholar
Kishore L, Kajal A, Kaur N. Role of nicotinamide in streptozotocin induced diabetes in animal models. J Endocrinol Thyroid Res. 2017;2(1):555577. https://doi.org/10.19080/JETR.2017.02.555577.
Rahimi R, Amin G, Ardekani MR. A review on Citrullus colocynthis Schrad.: from traditional Iranian medicine to modern phytotherapy. J Altern Complement Med. 2012;18(6):551–4. https://doi.org/10.1089/acm.2011.0297.
Article
PubMed
Google Scholar
Akbar S. Malva sylvestris L. (Malvaceae). In: Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; 2020:1129-1136. Springer International Publishing.https://doi.org/10.1007/978-3-030-16807-0_121.
Sanei M, Mokaberinejad R, Roozafzai F, Abousaidi SR. Citrullus colocynthis: the most suggested herb in Persian medicine for management of low-back pain. Res J Pharmacogn. 2020;7(1):77–84. https://doi.org/10.22127/rjp.2019.185587.1496.
Gurudeeban S, Satyavani K, Ramanathan T. Bitter apple (Citrullus colocynthis): an overview of chemical composition and biomedical potentials. Asian J Plant Sci. 2010;9(7):394–401. https://doi.org/10.3923/ajps.2010.394.401.
Article
CAS
Google Scholar
Hussain AI, Rathore HA, Sattar MZ, Chatha SA, Sarker SD, Gilani AH. Citrullus colocynthis (L.) Schrad (bitter apple fruit): a review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol. 2014;155(1):54–66. https://doi.org/10.1016/j.jep.2014.06.011.
Article
CAS
PubMed
Google Scholar
Al-Hwaiti MS, Alsbou EM, Abu Sheikha G, Bakchiche B, Pham TH, Thomas RH, et al. Evaluation of the anticancer activity and fatty acids composition of “Handal” (Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Sci Nutr. 2021;9(1):282–9. https://doi.org/10.1002/fsn3.1994.
Article
CAS
PubMed
Google Scholar
Ayyad SE, Abdel-Lateff A, Alarif WM, Patacchioli FR, Badria FA, Ezmirly ST. In vitro and in vivo study of cucurbitacins-type triterpene glucoside from Citrullus colocynthis growing in Saudi Arabia against hepatocellular carcinoma. Environ Toxicol Pharmacol. 2012;33(2):245–51. https://doi.org/10.1016/j.etap.2011.12.010.
Article
CAS
PubMed
Google Scholar
Saeed MEM, Boulos JC, Elhaboub G, Rigano D, Saab A, Loizzo MR, et al. Cytotoxicity of cucurbitacin E from Citrullus colocynthis against multidrug-resistant cancer cells. Phytomedicine. 2019;62:152945. https://doi.org/10.1016/j.phymed.2019.152945.
Article
CAS
PubMed
Google Scholar
Perveen S, Ashfaq H, Ambreen S, Ashfaq I, Kanwal Z, Tayyeb A. Methanolic extract of Citrullus colocynthis suppresses growth and proliferation of breast cancer cells through regulation of cell cycle. Saudi J Biol Sci. 2021;28(1):879–86. https://doi.org/10.1016/j.sjbs.2020.11.029.
Article
CAS
PubMed
Google Scholar
Tannin-Spitz T, Grossman S, Dovrat S, Gottlieb HE, Bergman M. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. Biochem Pharmacol. 2007;73(1):56–67. https://doi.org/10.1016/j.bcp.2006.09.012.
Article
CAS
PubMed
Google Scholar
Abdulridha MK, Al-Marzoqi AH, Ghasemian A. The anticancer efficiency of Citrullus colocynthis toward the colorectal cancer therapy. J Gastrointest Cancer. 2020;51(2):439–44. https://doi.org/10.1007/s12029-019-00299-6.
Article
CAS
PubMed
Google Scholar
Asadi-Samani M, Kooti W, Aslani E, Shirzad H. A systematic review of Iran’s medicinal plants with anticancer effect. Evid Based Complement Alternat Med. 2015;21(2):143–53. https://doi.org/10.1177/2156587215600873.
Article
CAS
Google Scholar
Bourhia M, Messaoudi M, Bakrim H, Mothana RA, Sddiqui NA, Almarfadi OM, et al. Citrullus colocynthis (L.) Schrad: chemical characterization, scavenging and cytotoxic activities. Open Chem. 2020;18(1):986–94. https://doi.org/10.1515/chem-2020-0124.
Article
CAS
Google Scholar
Abu-Odeh AM, Talib WH. Middle East medicinal plants in the treatment of diabetes: a review. Molecules. 2021;26(3):742. https://doi.org/10.3390/molecules26030742.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Abhar HS, Schaalan MF. Phytotherapy in diabetes: review on potential mechanistic perspectives. World J Diabetes. 2014;5(2):176–97. https://doi.org/10.4239/wjd.v5.i2.176.
Article
PubMed
PubMed Central
Google Scholar
Shi C, Karim S, Wang C, Zhao M, Murtaza G. A review on antidiabetic activity of Citrullus colocynthis Schrad.Acta Pol Pharm. 2014;71(3):363–7.
Alhawiti NM. Antiplatelets and profibrinolytic activity of Citrullus colocynthis in control and high-fat diet-induced obese rats: mechanisms of action. Arch Physiol Biochem. 2018;124(2):156–66. https://doi.org/10.1080/13813455.2017.1369999.
Article
CAS
PubMed
Google Scholar
Jeyanthi KA, Mary V, Christy A. Hypolipidemic Effect of Citrullus colocynthis Seed Powder in Alloxan Induced Diabetic Rats. J Int Dent Medical Res. 2009;2:105–9.
Rahbar AR, Nabipour I. The Hypolipidemic Effect of Citrullus colocynthis on Patients with Hyperlipidemia. Pak J Biol Sci. 2010;13(24):1202–7. https://doi.org/10.3923/pjbs.2010.1202.1207.
Article
CAS
PubMed
Google Scholar
Zamani M, Rahimi AO, Mahdavi R, Nikbakhsh M, Jabbari MV, Rezazadeh H, et al. Assessment of anti-hyperlipidemic effect of Citrullus colocynthis. Rev Bras Farmacognosia. 2007;17(4):492–6. https://doi.org/10.1590/S0102-695X2007000400003.
Article
Google Scholar
Kim MG, Lee SE, Yang JY, Lee HS. Antimicrobial potentials of active component isolated from Citrullus colocynthis fruits and structure-activity relationships of its analogues against foodborne bacteria. J Sci Food Agric. 2014;94(12):2529–33. https://doi.org/10.1002/jsfa.6590.
Article
CAS
PubMed
Google Scholar
Keikhaie KR, Ghorbani S, Hosseinzadeh Z, Hassanshahian M. Antimicrobial activity of methanol extract of Citrullus colocynthis against antibiotic-resistant Staphylococcus aureus. Adv Herb Med. 2018;4:64–72.
Ponsankar A, Sahayaraj K, Senthil-Nathan S, Vasantha-Srinivasan P, Karthi S, Thanigaivel A, et al. Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Environ Sci Pollut Res Int. 2020;27(19):23390–401. https://doi.org/10.1007/s11356-019-04438-1.
Article
CAS
PubMed
Google Scholar
Ahmed M, Peiwen Q, Gu Z, Liu Y, Sikandar A, Hussain D, et al. Insecticidal activity and biochemical composition of Citrullus colocynthis, Cannabis indica and Artemisia argyi extracts against cabbage aphid (Brevicoryne brassicae L.). Sci Rep. 2020;10(1):522. https://doi.org/10.1038/s41598-019-57092-5.
Ostovar M, Akbari A, Anbardar MH, Iraji A, Salmanpour M, Hafez Ghoran S, et al. Effects of Citrullus colocynthis L. in a rat model of diabetic neuropathy. J Integr Med. 2020;18(1):59–67. https://doi.org/10.1016/j.joim.2019.12.002.
Article
PubMed
Google Scholar
Li Y, Zheng MIN, Zhai X, Huang Y, Khalid A, Malik A, et al. Effect of Gymnema sylvestre, Citrullus colocynthis and Artemisia absinthium on blood glucose and lipid profile in diabetic human. Acta Pol Pharm. 2015;72(5):981–5.
CAS
PubMed
Google Scholar
Ghauri AO, Ahmad S, Rehman T. In vitro and in vivo anti-diabetic activity of Citrullus colocynthis pulpy flesh with seeds hydro-ethanolic extract. J Complement Integr Med. 2020;17(2). https://doi.org/10.1515/jcim-2018-0228.
Karimabad MN, Niknia S, Golnabadi MB, Poor SF, Hajizadeh MR, Mahmoodi M. Effect of Citrullus colocynthis extract on glycated hemoglobin formation (in vitro). Eurasian J Med. 2020;52(1):47–51. https://doi.org/10.5152/eurasianjmed.2020.19223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajizadeh MA, Aminizadeh AH, Esmaeilpour K, Bejeshk MA, Sadeghi A, Salimi F. Investigating the effects of Citrullus colocynthis on cognitive performance and anxiety-like behaviors in STZ-induced diabetic rats. Int J Neurosci. 2021:1–13. https://doi.org/10.1080/00207454.2021.1916743.
Ahangarpour A, Oroojan AA. Effect of Crust and Seed Hydro-Alcoholic and aqueous Extract and Pulp Hydro-Alcoholic Extract of Citrullus colocynthis on Glucose Level in Insulin Resistance Male Rats. OFOGH-E-DANESH 2013;19(3):149-54.Q Horiz Med Sci. 2013;19:149–54.
Sebbagh N, Cruciani-Guglielmacci C, Ouali F, Berthault MF, Rouch C, Sari DC, et al. Comparative effects of Citrullus colocynthis, sunflower and olive oil-enriched diet in streptozotocin-induced diabetes in rats. Diabetes Metab. 2009;35(3):178–84. https://doi.org/10.1016/j.diabet.2008.10.005.
Article
CAS
PubMed
Google Scholar
Shafaei H, Rad JS, Delazar A, Behjati M. The effect of pulp and seed extract of Citrullus Colocynthis, as an antidaibetic medicinal herb, on hepatocytes glycogen stores in diabetic rabbits. Adv Biomed Res. 2014;3(1):258. https://doi.org/10.4103/2277-9175.148230.
Article
PubMed
PubMed Central
Google Scholar
Agarwal V, Sharma AK, Upadhyay A, Singh G, Gupta R. Hypoglycemic effects of Citrullus colocynthis roots. Acta Pol Pharm. 2012;69(1):75–9.
PubMed
Google Scholar
Lahfa FB, Azzi R, Mezouar DR, Djaziri R. Hypoglycemic effect of Citrullus colocynthis extracts. Phytothérapie. 2017;15(2):50–6. https://doi.org/10.1007/s10298-015-0997-4.
Article
CAS
Google Scholar
Albokhary K, Aljaser F, Abudawood M, Tabassum H, Bakhsh A, Alhammada S, et al. Role of oxidative stress and severity of diabetic retinopathy in type 1 & type 2 diabetes. Ophthalmic Res. 2021;64(4):613–21. https://doi.org/10.1159/000514722.
Article
CAS
Google Scholar
Victor P, Umapathy D, George L, Juttada U, Ganesh GV, Amin KN, et al. Crosstalk between endoplasmic reticulum stress and oxidative stress in the progression of diabetic nephropathy. Cell Stress Chaperones. 2021;26(2):311–21. https://doi.org/10.1007/s12192-020-01176-z.
Article
CAS
PubMed
Google Scholar
Ji LL, Yeo D. Oxidative stress: an evolving definition. Fac Rev. 2021;10:1-13. https://doi.org/10.12703/r/10-13.
Iova GM, Calniceanu H, Popa A, Szuhanek CA, Marcu O, Ciavoi G, et al. The antioxidant effect of curcumin and rutin on oxidative stress biomarkers in experimentally induced periodontitis in hyperglycemic Wistar rats. Molecules. 2021;26(5):1332. https://doi.org/10.3390/molecules26051332.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pashmforosh M, Rajabi Vardanjani H, Rajabi Vardanjani H, Pashmforosh M, Khodayar MJ. Topical anti-inflammatory and analgesic activities of Citrullus colocynthis extract cream in rats. Medicina (Kaunas). 2018;54(4):51. https://doi.org/10.3390/medicina54040051.
Article
Google Scholar
Rizvi TS, Khan AL, Ali L, Al-Mawali N, Mabood F, Hussain J, et al. In vitro oxidative stress regulatory potential of Citrullus colocynthis and Tephrosia apollinea. Acta Pharma. 2018;68(2):235–42. https://doi.org/10.2478/acph-2018-0012.
Article
CAS
Google Scholar
Benmehdi H, Azzi R, Djaziri R, Lahfa F, Benariba N, Tabti B. Effect of saponosides crude extract isolated from Citrullus Colocynthis (L.) seeds on blood glucose level in normal and streptozotocin induced diabetic rats. J Med Plant Res. 2011;5(31):6864–8. https://doi.org/10.5897/JMPR11.11369.
Article
Google Scholar
Mojaz Dalfardi N, Ghodrati Azadi H, Fathi HB. Comparison of the effect of edible Citrullus colocynthis fruit powder with metformin on the level of blood glucose in streptozotocin-induced diabetic male rats. Q Horiz Med Sci. 2015;21(1):7–12. https://doi.org/10.18869/acadpub.hms.21.1.7.
Article
Google Scholar
Blaschke F, Takata Y, Caglayan E, Law RE, Hsueh WA. Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes. Arterioscler Thromb Vasc Biol. 2006;26(1):28–40. https://doi.org/10.1161/01.ATV.0000191663.12164.77.
Article
CAS
PubMed
Google Scholar
Ghamarian A, Abdollahi M, Su X, Amiri A, Ahadi A, Nowrouzi A. Effect of chicory seed extract on glucose tolerance test (GTT) and metabolic profile in early and late stage diabetic rats. DARU. 2012;20(1):56. https://doi.org/10.1186/2008-2231-20-56.
Rub RA, Sidiqqi A, Ali AM, Shaikh A, Mukadam M. Screening of antioxidant & antidiabetic potential of polyphenol rich fraction from Cichorium intybus. Pharmacogn J. 2014;6(4):1–9. https://doi.org/10.5530/pj.2014.4.1.
Article
CAS
Google Scholar
Heimler D, Isolani L, Vignolini P, Romani A. Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chem. 2009;114(3):765–70. https://doi.org/10.1016/j.foodchem.2008.10.010.
Article
CAS
Google Scholar
Kumar S, Kumar D, Saroha K, Singh N, Vashishta B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharm. 2008;58(2):215–20. https://doi.org/10.2478/v10007-008-0008-1.
Article
CAS
PubMed
Google Scholar
Hussain AI, Rathore HA, Sattar MZA, Chatha SAS, Ahmad F, Ahmad A, et al. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora. Ind Crops Prod. 2013;45:416–22. https://doi.org/10.1016/j.indcrop.2013.01.002.
Article
CAS
Google Scholar
Rezagholizadeh L, Pourfarjam Y, Nowrouzi A, Nakhjavani M, Meysamie A, Ziamajidi N, et al. Effect of Cichorium intybus L. on the expression of hepatic NF-kappaB and IKKbeta and serum TNF-alpha in STZ- and STZ+ niacinamide-induced diabetes in rats. Diabetol Metab Syndr. 2016. https://doi.org/10.1186/s13098-016-0128-6.
Dehghani F, Panjehshahin MR. The toxic effect of alcoholic extract of Citrullus colocynthis on rat liver. Iran J Pharmacol Ther. 2006;5:117–9.
Sun X, Han F, Yi J, Han L, Wang B. Effect of aspirin on the expression of hepatocyte NF-κB and serum TNF-α in streptozotocin-induced type 2 diabetic rats. J Korean Med Sci. 2011;26(6):765–70. https://doi.org/10.3346/jkms.2011.26.6.765.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson BJ, Markwell J. Assays for determination of protein concentration. Curr Protoc Protein Sci. 2007;48(1):3–4. https://doi.org/10.1002/0471140864.ps0304s48.
Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994. https://doi.org/10.1016/s0076-6879(94)33041-7.
Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509. https://doi.org/10.1016/S0021-9258(18)64849-5.
Abdel-Hassan IA, Abdel-Barry JA, Mohammeda ST. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. J Ethnopharmacol. 2000;71(1-2):325–30. https://doi.org/10.1016/S0378-8741(99)00215-9.
Article
CAS
PubMed
Google Scholar
Liu F, Xie M, Chen D, Li J, Ding W. Effect of V (IV) O (dipic-cl)(H2O)2 on lipid metabolism disorders in the liver of STZ-induced diabetic rats. J Diabetes Res. 2013;2013:1–10. https://doi.org/10.1155/2013/956737.
Article
Google Scholar
Ohno T, Horio F, Tanaka S, Terada M, Namikawa T, Kitoh J. Fatty liver and hyperlipidemia in IDDM (insulin-dependent diabetes mellitus) of streptozotocin-treated shrews. Life Sci. 2000;66(2):125–31. https://doi.org/10.1016/s0024-3205(99)00570-6.
Article
CAS
PubMed
Google Scholar
Esmail OEA. A possible protective effect of Citrullus colocynthis Melon against diabetes mellitus type 2 associated with non-alcoholic fatty liver syndrome in rats. J Am Sci. 2012;8:1054–61.
Daradka H, Almasad MM, Qazan W, El-Banna NM, Samara OH. Hypolipidaemic effects of Citrullus colocynthis L. in rabbits. Pak J Biol Sci. 2007;10(16):2768–71. https://doi.org/10.3923/pjbs.2007.2768.2771.
Article
PubMed
Google Scholar
Gurudeeban S, Ramanathan T. Invent Rapid Ethnopharmacol. 2010;1.
Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, Brown MS, Goldstein JL. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci. 1999;96(24):13656–61. https://doi.org/10.1073/pnas.96.24.13656.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ziamajidi N, Khaghani S, Hassanzadeh G, Vardasbi S, Ahmadian S, Nowrouzi A, et al. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARalpha and SREBP-1. Food Chem Toxicol. 2013;58:198–209. https://doi.org/10.1016/j.fct.2013.04.018.
Article
CAS
PubMed
Google Scholar
Cumaoglu A, Cevik C, Rackova L, Ari N, Karasu C. Effects of antioxidant stobadine on protein carbonylation, advanced oxidation protein products and reductive capacity of liver in streptozotocin-diabetic rats: role of oxidative/nitrosative stress. BioFactors. 2007;30(3):171–8. https://doi.org/10.1002/biof.5520300304.
Article
CAS
PubMed
Google Scholar
Willecke F, Scerbo D, Nagareddy P, Obunike JC, Barrett TJ, Abdillahi ML, et al. Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice. Arterioscler Thromb Vasc Biol. 2015;35(1):102–10. https://doi.org/10.1161/ATVBAHA.114.304615.
Article
CAS
PubMed
Google Scholar
Jourdan T, Djaouti L, Demizieux L, Gresti J, Verges B, Degrace P. Liver carbohydrate and lipid metabolism of insulin-deficient mice is altered by trans-10, cis-12 conjugated linoleic acid. J Nutr. 2009;139(10):1901–7. https://doi.org/10.3945/jn.109.111062.
Article
CAS
PubMed
Google Scholar
Choi SH, Ginsberg HN. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance. Trends Endocrinol Metab. 2011;22(9):353–63. https://doi.org/10.1016/j.tem.2011.04.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khalil M, Mohamed G, Dallak M, Al-Hashem F, Sakr H, Eid RA, et al. The effect of Citrullus colocynthis pulp extract on the liver of diabetic rats a light and scanning electron microscopic study. Am J Biochem Biotechnol. 2010;6(3):155–63. https://doi.org/10.3844/ajbbsp.2010.155.163.
Article
Google Scholar
Oryan A, Hashemnia M, Hamidi AR, Mohammadalipour A. Effects of hydro-ethanol extract of Citrullus colocynthis on blood glucose levels and pathology of organs in alloxan-induced diabetic rats. Asian Pac J Trop Dis. 2014;4(2):125–30. https://doi.org/10.1016/s2222-1808(14)60328-5.
Article
PubMed Central
Google Scholar
Benariba N, Djaziri R, Zerriouh BH, Bellakhdar W, Hupkens E, Boucherit Z, et al. Short- and long-term effects of various Citrullus colocynthis seed extracts in normal and streptozotocin-induced diabetic rats. Int J Mol Med. 2012;30(6):1528–36. https://doi.org/10.3892/ijmm.2012.1127.
Article
PubMed
Google Scholar
Benariba N, Djaziri R, Zerriouh BH, Boucherit Z, Louchami K, Senner A, et al. Antihyperglycemic effect of Citrullus colocynthis seed aqueous extracts in streptozotocin-induced diabetic rats. Met Funct Res Diab. 2009;2:71–7.
Savaj S, Ghaffari M, Abbasi MA, Azar J. Acute Interstitial Nephritis Induced by Citrullus Colocynthis. Iran J. Kidney Dis. 2017;11(5):385–7.
Matthews DR, Rudenski AS, Burnett MA, Darling P, Turner RC. The half-life of endogenous insulin and C-peptide in man assessed by somatostatin suppression. Clin Endocrinol. 1985;23(1):71–9. https://doi.org/10.1111/j.1365-2265.1985.tb00185.x.
Article
CAS
Google Scholar
Guildford L, Crofts C, Lu J. Can the molar insulin: c-peptide ratio be used to predict hyperinsulinaemia? Biomedicines. 2020;8(5):108. https://doi.org/10.3390/biomedicines8050108.
Article
CAS
PubMed Central
Google Scholar
Amin A, Tahir M, Lone KP. Effect of Citrullus colocynthis aqueous seed extract on beta cell regeneration and intra-islet vasculature in alloxan induced diabetic male albino rats. J Pak Med Assoc. 2017;67(5):715–21.
PubMed
Google Scholar
Benariba N, Djaziri R, Hupkens E, Louchami K, Malaisse WJ, Sener A. Insulinotropic action of Citrullus colocynthis seed extracts in rat pancreatic islets. Mol Med Rep. 2013;7(1):233–6. https://doi.org/10.3892/mmr.2012.1151.
Article
CAS
PubMed
Google Scholar
Ebrahimi E, Bahramzadeh S, Hashemitabar M, Mohammadzadeh G, Shirali S, Jodat J. Effect of hydroalcoholic leaves extract of Citrullus colocynthis on induction of insulin secretion from isolated rat islets of Langerhans. Asian Pac J Trop Dis. 2016;6(8):638–41. https://doi.org/10.1016/S2222-1808(16)61101-5.
Article
Google Scholar
Nmila R, Gross R, Rchid H, Roye M, Manteghetti M, Petit P, et al. Insulinotropic effect of Citrullus colocynthis fruit extracts. Planta Med. 2000;66(5):418–23. https://doi.org/10.1055/s-2000-8586.
Article
CAS
PubMed
Google Scholar
Drissi F, Lahfa F, Gonzalez T, Peiretti F, Tanti JF, Haddad M, et al. A Citrullus colocynthis fruit extract acutely enhances insulin-induced GLUT4 translocation and glucose uptake in adipocytes by increasing PKB phosphorylation. J Ethnopharmacol. 2021;270:113772. https://doi.org/10.1016/j.jep.2020.113772.
Article
CAS
PubMed
Google Scholar
Barghamdi B, Ghorat F, Asadollahi K, Sayehmiri K, Peyghambari R, Abangah G. Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: a clinical trial study. J Pharm Bioallied Sci. 2016;8(2):130–4. https://doi.org/10.4103/0975-7406.171702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huseini HF, Darvishzadeh F, Heshmat R, Jafariazar Z, Raza M, Larijani B. The clinical investigation of Citrullus colocynthis (L.) schrad fruit in treatment of type II diabetic patients: a randomized, double blind, placebo-controlled clinical trial. Phytother Res. 2009;23(8):1186–9. https://doi.org/10.1002/ptr.2754.
Article
PubMed
Google Scholar
Al-Ghaithi F, El-Ridi MR, Adeghate E, Amiri MH. Biochemical effects of Citrullus colocynthis in normal and diabetic rats. Mol Cell Biochem. 2004;261(1):143–9. https://doi.org/10.1023/B:MCBI.0000028749.63101.cc.
Article
CAS
PubMed
Google Scholar
Arkkila PE, Koskinen PJ, Kantola IM, Ronnemaa T, Seppanen E, Viikari JS. Diabetic complications are associated with liver enzyme activities in people with type 1 diabetes. Diabetes Res Clin Pract. 2001;52(2):113–8. https://doi.org/10.1016/s0168-8227(00)00241-2.
Article
CAS
PubMed
Google Scholar
Dallak M. In vivo, hypolipidemic and antioxidant effects of Citrullus colocynthis pulp extract in alloxan-induced diabetic rats. Afr J Biotechnol. 2011;10(48):9898–903. https://doi.org/10.5897/ajb11.268.
Article
Google Scholar
Meziane RK, Khemmar L, Amamou F, Yazit M, Didi A, Chabane-Sari D. Ann Biol Res. 2012;3:2486–90.
Google Scholar
Gluchowski NL, Becuwe M, Walther TC, Farese RV Jr. Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol. 2017;14(6):343–55. https://doi.org/10.1038/nrgastro.2017.32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Kalhan SC, Hanson RW. What is the metabolic role of phosphoenolpyruvate carboxykinase. J Biol Chem. 2009;284(40):27025–9. https://doi.org/10.1074/jbc.R109.040543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell. 2013;24(4):384–99. https://doi.org/10.1016/j.devcel.2013.01.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Okazaki H, Tamura Y, et al. Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes. 2004;53(3):560–9. https://doi.org/10.2337/diabetes.53.3.560.
Article
CAS
PubMed
Google Scholar
Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, et al. “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 2005;1(5):309–22. https://doi.org/10.1016/j.cmet.2005.04.002.
Article
CAS
PubMed
Google Scholar
Mashek DG. Hepatic fatty acid trafficking: multiple forks in the road. Adv Nutr. 2013;4(6):697–710. https://doi.org/10.3945/an.113.004648.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park H, Kaushik VK, Constant S, Prentki M, Przybytkowski E, Ruderman NB, et al. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem. 2002;277(36):32571–7. https://doi.org/10.1074/jbc.M201692200.
Article
CAS
PubMed
Google Scholar
Koh EH, Kim MS, Park JY, Kim HS, Youn JY, Park HS, et al. Peroxisome proliferator–activated receptor (PPAR)-alpha activation prevents diabetes in OLETF rats. Diabetes. 2003;52(9):2331–7. https://doi.org/10.2337/diabetes.52.9.2331.
Article
CAS
PubMed
Google Scholar
Im SS, Kim MY, Kwon SK, Kim TH, Bae JS, Kim H, et al. Peroxisome proliferator-activated receptor {alpha} is responsible for the up-regulation of hepatic glucose-6-phosphatase gene expression in fasting and db/db mice. J Biol Chem. 2011;286(2):1157–64. https://doi.org/10.1074/jbc.M110.157875.
Article
CAS
PubMed
Google Scholar
Memon RA, Tecott LH, Nonogaki K, Beigneux A, Moser AH, Grunfeld CA, et al. Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: Troglitazone induces expression of PPARg-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology. 2000;141(11):4021–31. https://doi.org/10.1210/endo.141.11.7771.
Article
CAS
PubMed
Google Scholar
Zhang F, Xu X, Zhang Y, Zhou B, He Z, Zhai Q. Gene expression profile analysis of type 2 diabetic mouse liver. PLoS One. 2013;8(3):e57766. https://doi.org/10.1371/journal.pone.0057766.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou JY, Zhou SW, Zhang KB, Tang JL, Guang LX, Ying Y, et al. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats. Biol Pharm Bull. 2008;31(6):1169–76. https://doi.org/10.1248/bpb.31.1169.
Article
CAS
PubMed
Google Scholar
Lu KL, Xu WN, Wang LN, Zhang DD, Zhang CN, Liu WB. Hepatic beta-oxidation and regulation of carnitine palmitoyltransferase (CPT) I in blunt snout bream Megalobrama amblycephala fed a high fat diet. PLoS One. 2014;9(3):e93135. https://doi.org/10.1371/journal.pone.0093135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Chen Y, Ding L, He X, Takahashi Y, Gao Y, et al. Pathogenic role of diabetes-induced PPAR-α down-regulation in microvascular dysfunction. Proc Natl Acad Sci. 2013;110(38):15401–6. https://doi.org/10.1073/pnas.1307211110.
Article
PubMed
PubMed Central
Google Scholar
Kanie N, Matsumoto T, Kobayashi T, Kamata K. Relationship between peroxisome proliferator-activated receptors (PPAR alpha and PPAR gamma) and endothelium-dependent relaxation in streptozotocin-induced diabetic rats. Br J Pharmacol. 2003;140(1):23–32. https://doi.org/10.1038/sj.bjp.0705414.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan SM, Sun RQ, Zeng XY, Choong ZH, Wang H, Watt MJ, et al. Activation of PPARalpha ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes. 2013;62(6):2095–105. https://doi.org/10.2337/db12-1397.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charbonnel B. PPAR-alpha and PPAR-gamma agonists for type 2 diabetes. Lancet. 2009. https://doi.org/10.1016/S0140-6736(09)61040-0.
Peeters A, Baes M. Role of PPARalpha in hepatic carbohydrate metabolism. PPAR Res. 2010;2010:1–12. https://doi.org/10.1155/2010/572405.
Article
CAS
Google Scholar
Xu KZ-Y, Zhu C, Kim MS, Yamahara J, Li Y. Pomegranate flower ameliorates fatty liver in an animal model of type 2 diabetes and obesity. J Ethnopharmacol. 2009;123(2):280–7. https://doi.org/10.1016/j.jep.2009.03.035.
Article
PubMed
Google Scholar
Tang CC, Huang HP, Lee YJ, Tang YH, Wang CJ. Hepatoprotective effect of mulberry water extracts on ethanol-induced liver injury via anti-inflammation and inhibition of lipogenesis in C57BL/6J mice. Food Chem Toxicol. 2013;62:786–96. https://doi.org/10.1016/j.fct.2013.10.011.
Article
CAS
PubMed
Google Scholar
Song S, Attia RR, Connaughton S, Niesen MI, Ness GC, Elam MB, et al. Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Mol Cell Endocrinol. 2010;325(1-2):54–63. https://doi.org/10.1016/j.mce.2010.05.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiodi P. Diabetes mellitus: could the inhibition of a single enzyme (CPT-1) involved in the beta-oxidation process improve this complex Disease. Curr Res Diabetes Obes J. 2017. https://doi.org/10.19080/CRDOJ.2016.13.555563.
Louet JF, Chatelain F, Decaux JF, Park EA, Kohl C, Pineau T, et al. Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor alpha (PPARalpha)-independent pathway. Biochem J. 2001;354(1):189–97. https://doi.org/10.1042/0264-6021:3540189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allaire M, Rautou PE, Codogno P, Lotersztajn S. Autophagy in liver diseases: time for translation? J Hepatol. 2019;70(5):985–98. https://doi.org/10.1016/j.jhep.2019.01.026.
Article
PubMed
Google Scholar
Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56(4):952–64. https://doi.org/10.1016/j.jhep.2011.08.025.
Article
CAS
PubMed
Google Scholar
Yan H, Gao YQ, Zhang Y, Wang H, Liu GS, Lei JY. Chlorogenic acid alleviates autophagy and insulin resistance by suppressing JNK pathway in a rat model of nonalcoholic fatty liver disease. J Biosci. 2018;43(2):287–94. https://doi.org/10.1007/s12038-018-9746-5.
Article
CAS
PubMed
Google Scholar
Bandsma RH, Van Dijk TH, Harmsel At A, Kok T, Reijngoud DJ, Staels B, et al. Hepatic de novo synthesis of glucose 6-phosphate is not affected in peroxisome proliferator-activated receptor alpha-deficient mice but is preferentially directed toward hepatic glycogen stores after a short term fast. J Biol Chem. 2004;279(10):8930–7. https://doi.org/10.1074/jbc.M310067200.
Article
CAS
PubMed
Google Scholar
Beale EG, Antoine B, Forest C. Glyceroneogenesis in adipocytes: another textbook case. Trends Biochem Sci. 2003;28(8):402–3. https://doi.org/10.1016/S0968-0004(03)00163-4.
Article
CAS
PubMed
Google Scholar
Kalhan SC, Bugianesi E, McCullough AJ, Hanson RW, Kelley DE. Estimates of hepatic glyceroneogenesis in type 2 diabetes mellitus in humans. Metabolism. 2008;57(3):305–12. https://doi.org/10.1016/j.metabol.2007.10.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem. 2003;278(33):30413–6. https://doi.org/10.1074/jbc.R300017200.
Article
CAS
PubMed
Google Scholar
Dallak M, Jaliah BI. Antioxidant activity of Citrullus colocynthis pulp extract in the RBCs of alloxan-induced diabetic rats. Pak J. Physiol. 2010;6(1):1–5.
Sanadgol N, Najafi S, Ghasemi LV, Motalleb G, Estakhr J. J Pharmacognosy Phytother. 2011;3:81–8.
Google Scholar
Kumar MV, Shimokawa T, Nagy TR, Lane MD. Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc Natl Acad Sci U S A. 2002;99(4):1921–5. https://doi.org/10.1073/pnas.042683699.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parveen R, Khan N, Zahiruddin S, Ibrahim M, Anjum V, Parveen B, et al. TLC-bioautographic evaluation for high-throughput screening and identification of free radical scavenging and antidiabetic compounds from traditional Unani medicinal plant: Citrullus colocynthis Schrad. J AOAC Int. 2020;103(3):669–77. https://doi.org/10.5740/jaoacint.19-0287.
Article
PubMed
Google Scholar
Rani A, Goyal A, Arora S. A brief review on Citrullus colocynthis- bitter apple. Arch Curr Res Int. 2017;8(4):1–9. https://doi.org/10.9734/ACRI/2017/35158.
Article
Google Scholar
Shahin-Kaleybar B, Niazi A, Afsharifar A, Nematzadeh G, Yousefi R, Retzl B, et al. Isolation of cysteine-rich peptides from Citrullus colocynthis. Biomolecules. 2020;10(9):1326. https://doi.org/10.3390/biom10091326.
Figueirinha A, Paranhos A, Pérez-Alonso JJ, Santos-Buelga C, Batista MT. Cymbopogon citratus leaves: characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. 2008;110(3):718–28. https://doi.org/10.1016/j.foodchem.2008.02.045.
Article
CAS
Google Scholar
Mohamed MSM, Saleh AM, Abdel-Farid IB, El-Naggar SA. Growth, hydrolases and ultrastructure of fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants. Pestic Biochem Physiol. 2017;141:57–64. https://doi.org/10.1016/j.pestbp.2016.11.007.
Article
CAS
PubMed
Google Scholar
Jang S-S. Production of mono sugar from acid hydrolysis of seaweed. Afr J Biotechnol. 2012;11(8). https://doi.org/10.5897/AJB10.1681.
De P, Baltas M, Bedos-Belval F. Cinnamic acid derivatives as anticancer agents-a review. Curr Med Chem. 2011;18(11):1672–703. https://doi.org/10.2174/092986711795471347.
Article
CAS
PubMed
Google Scholar
Chen KC, Chang SS, Huang HJ, Lin TL, Wu YJ, Chen CY. Three-in-one agonists for PPAR-alpha, PPAR-gamma, and PPAR-delta from traditional Chinese medicine. J Biomol Struct Dyn. 2012;30(6):662–83. https://doi.org/10.1080/07391102.2012.689699.
Article
CAS
PubMed
Google Scholar
Jain N, Bhansali S, Kurpad AV, Hawkins M, Sharma A, Kaur S, et al. Effect of a dual PPAR alpha/gamma agonist on insulin sensitivity in patients of type 2 diabetes with hypertriglyceridemia- randomized double-blind placebo-controlled trial. Sci Rep. 2019;9(1):19017. https://doi.org/10.1038/s41598-019-55466-3.
Article
CAS
PubMed
PubMed Central
Google Scholar