Herfindal ET, Gourley DR. Textbook of therapeutics: drug and disease management. 6th ed. Baltimore: Williams and Wilkins Press; 1996. p. 357–80.
Google Scholar
Lazar DF, Saltiel AR. Lipd Phosphatse as drug discovery targets for type 2 diabetes. Nat Rev. 2006;4:333–42.
Google Scholar
International Diabetes Federation. IDF Diabetes Atlas ninth edition. Diabetes Res Clin Pract. 2019;9:10–122.
Graves LE, Donaghue KC. Management of diabetes complications in youth. Ther Adv Endocrinol Metab. 2019;10(01):1–12.
Google Scholar
Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 2016;4(6):537–47. https://doi.org/10.1016/S2213-8587(16)30010-9.
Article
PubMed
Google Scholar
World Health Organization. Preventing Chronic Diseases: a vital investment. 2017.
Google Scholar
Vaughan P, Gilson L, Mills A. Diabetes in developing countries: its importance for public health. Health Pol Plan. 1989;4(2):97–109.
Article
Google Scholar
Welz AN, Emberger-Klein A, Menrad K. Why people use herbal medicine: insights from a focus-group study in Germany. BMC Complement Altern Med. 2018;18(1):1–9.
Article
Google Scholar
Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific J Trop Dis. 2013;3(2):93–102. https://doi.org/10.1016/S2222-1808(13)60052-3.
Article
Google Scholar
Omodanisi EI, Aboua GY, Oguntibeju OO. Therapeutic potentials and pharmacological properties of moringa oleifera lam in the treatment of diabetes mellitus and related complications. Trop J Pharm Res. 2017;16(7):1737–46.
Article
CAS
Google Scholar
Sarkodie JA, N’Guessan BB, Kretchy IA, Nyarko AK. The antihyperglycemic, antioxidant and antimicrobial activities of Ehretia cymosa. J Pharmacogn Phytochem. 2015;4(3):105–11.
CAS
Google Scholar
Adinortey MB, Sarfo JK, Kwarteng J, Adinortey CA, Ekloh W, Kuatsienu LE, et al. The Ethnopharmacological and nutraceutical relevance of Launaea taraxacifolia (Willd.) Amin ex C. Jeffrey Evid Based Complement Altern Med. 2018;2018(01):1–13.
Google Scholar
Adebisi AA. Launaea Taraxacifolia (Willd) Amin ex C Jeffrey. Record from Protabase. Diera: PROTA (Plant Resources of Tropical Africa); 2004.
Adedeji O, Jewoola O. Importance of leaf epidermal characters in the Asteraceae Family. Not Bot Horti Agrobot Cluj-Napoca. 2008;36(2):7–16.
Google Scholar
Burkill HM. The Usefulness of Plants of West Africa. Edition 2, vol. 2(1). Kew, ISBN 10094764301X: R Bot Gard Ithaka Harb Incorporation; 1985. p. 1–2.
Google Scholar
Koukoui O, Senou M, Agbangnan P, Seton S, Koumayo F, Azonbakin S, et al. Effective in-vivo cholesterol and triglycerides lowering activities of Hydroethanolic extract of Launaea Taraxacifolia leaves. Int J Pharm Sci Res. 2017;8(5):2040–7.
CAS
Google Scholar
Koukoui O, Agbangnan P, Boucherie S, Yovo M, Nusse O, Combettes L, et al. Phytochemical study and evaluation of cytotoxicity, antioxidant and hypolipidemic properties of Launaea taraxacifolia leaves extracts on cell lines HepG2 and PLB985. Am J Plant Sci. 2015;06(11):1768–79.
Article
CAS
Google Scholar
Ololade ZS, Kuyoro S, Ogunmola O, Abiona O. Phytochemical, antioxidant, anti-arthritic, anti-inflammatory and bactericidal potentials of the leaf extract of Lactuca taraxacifolia. Glob J Med Res B Pharma Drug Discov Toxicol Med. 2017;17(2):19–28.
Google Scholar
Thomford NE, Mkhize B, Dzobo K, Mpye K, Rowe A, Parker MI, et al. African lettuce (Launaea taraxacifolia) displays possible anticancer effects and herb-drug interaction potential by CYP1A2, CYP2C9, and CYP2C19 inhibition. Omi A J Integr Biol. 2016;20(9):528–37.
Article
CAS
Google Scholar
Akintunde JK, Woleola MT. Impairment of neuro-renal cells on exposure to cosmopolitan polluted river water followed by differential protection of Launea taraxacifolia in male rats. Comp Clin Path. 2019;01(01):1–15.
Google Scholar
Salisu T, Ottu B, Okpuzor J. Histopathologic studies of aqueous extracts of five selected local edible vegetables in isoproterenol-induced myocardial infarction in male Wistar albino rats. Planta Med. 2014;80(01):2–39.
Google Scholar
Thomford NE, Awortwe C, Dzobo K, Adu F, Chopera D, Wonkam A, et al. Inhibition of CYP2B6 by medicinal plant extracts: implication for use of efavirenz and nevirapine based highly active antiretroviral therapy (HAART) in resource-limited settings. Molecules. 2016;21(221):1–15.
Google Scholar
Isehunwa G, Olufemi OI, Adewoye E. Effects of aqueous extract of Launaea taraxacifolia leaf on glucose, glycogen levels and lactate dehydrogenase activity in male Wistar rats. Arch Basic Appl Med. 2017;5(01):43–6.
Google Scholar
Kuyoro S, Akinloye O, Ololade Z, Kayode O, Badejo O. Anti-diabetic properties of crude Methanolic leaf extract of Launaea taraxacifolia (wild lettuce). Niger J Biochem Mol Biol. 2017;32(1):67–77.
Google Scholar
Iyabo AM, Hauwa A. Uterotonic effect of aqueous extract of Launaea taraxacifolia Willd on rat isolated uterine horns. Afr J Biotechnol. 2019;18(19):399–407.
CAS
Google Scholar
Kuatsienu LE, Ansah C, Adinortey MB. Toxicological evaluation and protective effect of ethanolic leaf extract of Launaea taraxacifolia on gentamicin-induced rat kidney injury. Asian Pac J Trop Biomed. 2017;7(7):640–6. https://doi.org/10.1016/j.apjtb.2017.06.011.
Article
Google Scholar
American Diabetes Association (ADA). Standards of medical care in diabetes - 2020. J Clin Appl Res Educ. 2020;43(1):1–212.
Google Scholar
Kishore L, Kajar A, Kaur N. Role of nicotinamide in Streptozotocin induced diabetes in animal models. J Endocrinol Thyroid Res. 2017;1(1):1–4.
Google Scholar
Andrade-cetto A. Effects of medicinal plant extracts on gluconeogenesis. Bot Targets Ther. 2012;2012(2):1–6.
Google Scholar
Oluwasogo OA, Victor OB, Tayo AM, Kehinde AJ. Glucose absorption in the intestine of albino rats. J Basic Clin Physiol Pharmacol. 2016;27(4):357–61.
PubMed
CAS
Google Scholar
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005.
Article
PubMed
CAS
Google Scholar
Chaudhury D, Aggarwal A. Diabetic dyslipidemia: current concepts in pathophysiology and management. J Clin Diagnostic Res. 2018;12(1):6–9.
Google Scholar
Hannan JM, Ali L, Khaleque J, Akhter M, Flatt PR, Abdel-Wahab YH. Aqueous extracts of husks of Plantago ovata reduce hyperglycemia in type 1 and type 2 diabetes by inhibition of intestinal glucose absorption. Br J Nutr. 2006;96(01):131–7.
Article
PubMed
CAS
Google Scholar
Evans WC. Trease and Evans Pharmacognosy, vol. 16(1). 16th ed: Saunders, Elsevier Edinburgh; 2009. p. 133–48.
Google Scholar
Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical screening and extraction: a review. Int Pharm Sci. 2011;1(1):98–106.
Google Scholar
Elamin MH, Fadlalla I, Omer AS, Ibrahim AH. Histopathological alteration in STZ-nicotinamide diabetic rats, a complication of diabetes or a toxicity of STZ? Int J Diabetes Clin Res. 2018;5(3):1–8.
Google Scholar
Ojiako O, Chikezie P, Zedech U. Serum lipid profile of hyperlipidemic rabbits (Lepus townsendii) treated with leaf extracts of Hibiscus rose-sinesis, Emilia coccinea, Acanthus montanus, and Asystasia gangetica. J Med Plants Res. 2013;7(43):3226–31.
Google Scholar
Zafar M, Naqvi SN-H. Effects of STZ-induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. Int J Morphol. 2010;28(1):135–42 http://www.scielo.cl/pdf/ijmorphol/v28n1/art19.pdf.
Article
Google Scholar
Lai M, Lü B. Tissue preparation for microscopy and histology. Compr Sampl Sample Prep. 2012;3(1):53–93.
Article
Google Scholar
Andrade-cetto A, Vasquez CR. Gluconeogenesis inhibition and phytochemical composition of two Cecropia species. J Ethnopharmacol. 2010;130(1):93–7. https://doi.org/10.1016/j.jep.2010.04.016.
Article
PubMed
CAS
Google Scholar
Wilson BY, Wiseman G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1953;123(1):116–25.
Article
Google Scholar
Alam MA, Al-Jenoobi FI, Al-Mohizea AM. Everted gut sac model as a tool in pharmaceutical research: limitations and applications. J Pharm Pharmacol. 2012;64(3):326–36.
Article
PubMed
CAS
Google Scholar
Shishu MM. Comparative bioavailability of curcumin, turmeric, and Biocurcumax in traditional vehicles using non-everted rat intestinal sac model. J Funct Foods. 2010;2(1):60–5. https://doi.org/10.1016/j.jff.2010.01.004.
Article
CAS
Google Scholar
Ruan L, Chen S, Yu B, Zhu D, Cordell G, Qiu S. Prediction of human absorption of natural compounds by the non-everted rat intestinal sac model. Eur J Med Chem. 2006;41(5):605–10.
Article
PubMed
CAS
Google Scholar
Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. 2015;70(5):1–20.
Google Scholar
Adedayo BC, Oyeleye SI, Oboh G. Inhibition of some enzymes implicated in diabetes mellitus by raw and blanched extracts of African lettuce (Launaea taraxacifolia). Biokemistry. 2020;32(1):69–76.
Google Scholar
Gbadamosi IT, Adeyi AO, Oyekanmi OO, Somade OT. Launaea taraxacifolia leaf partitions ameliorate alloxan-induced pathophysiological complications via antioxidant mechanisms in diabetic rats. Metab Open. 2020;6:100029. https://doi.org/10.1016/j.metop.2020.100029.
Article
CAS
Google Scholar
Bosenberg L, Van Zyl D. The mechanism of action of oral antidiabetic drugs: a review of recent literature. J Endocrinol Metab Diabetes South Africa. 2008;13(3):80–8.
Article
Google Scholar
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bekele S, Yohannes T, Eshete AM. Dyslipidemia and associated factors among diabetic patients attending Durame general hospital in southern nations, nationalities, and people’s region. Diabetes Metab Syndr Obes Targets Ther. 2017;10(1):265–71.
Article
CAS
Google Scholar
Wu L, Parhofer KG. Diabetic dyslipidemia. Metab Clin Exp. 2014;63(12):1469–79. https://doi.org/10.1016/j.metabol.2014.08.010.
Article
PubMed
CAS
Google Scholar
Mandal A, Bhattarai B, Kafle P, Khalid M, Jonnadula SK, Lamicchane J, et al. Elevated liver enzymes in patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease. Cureus. 2018;10(11):1–9.
Google Scholar
Rodríguez V, Plavnik L, Tolosa de Talamoni N. Naringin attenuates liver damage in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2018;105:95–102. https://doi.org/10.1016/j.biopha.2018.05.120.
Article
PubMed
CAS
Google Scholar
Lu J, Guo M, Wang H, Pan H, Wang L, Yu X, et al. Association between pancreatic atrophy and loss of insulin secretory capacity in patients with type 2 diabetes mellitus. J Diabetes Res. 2019;2019(02):1–6.
Google Scholar
Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012;237(5):481–90.
Article
CAS
Google Scholar
Fernandes SM, Cordeiro PM, Watanabe M, da Fonseca CD, de Vattimo MF. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats. Arch Endocrinol Metab. 2016;60(5):443–9.
Article
PubMed
Google Scholar
Verma PR, Itankar PR, Arora SK. Evaluation of antidiabetic antihyperlipidemic and pancreatic regeneration, potential of aerial parts of Clitoria ternatea. Rev Bras Farmacogn. 2013;23(1):819–29.
Article
Google Scholar
Rodriguez-Saldana J. The diabetes textbook: clinical principles, patient management, and public health issues. The Diabetes Textbook. 2019;1:463–555.
Google Scholar
Zangeneh MM, Zangeneh A, Tahvilian R, Moradi R. Antidiabetic, hematoprotective and nephroprotective effects of the aqueous extract of Falcaria vulgaris in diabetic male mice. Arch Biol Sci. 2018;70(4):655–64.
Article
Google Scholar
Zheng T, Hao X, Wang Q, Chen L, Jin S, Bian F. Entada phaseoloides extract suppresses hepatic gluconeogenesis via activation of the AMPK signaling pathway. J Ethnopharmacol. 2016;193(1):691–9. https://doi.org/10.1016/j.jep.2016.10.039.
Article
PubMed
CAS
Google Scholar
Zilov AV, Abdelaziz SI, AlShammary A, Al Zahrani A, Amir A, Assaad Khalil SH, et al. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab Res Rev. 2019;35(7):1–12.
Article
Google Scholar
Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017;13(10):572–87. https://doi.org/10.1038/nrendo.2017.80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paleari L, Burhenne J, Weiss J, Foersch S, Roth W, Parodi A, et al. High accumulation of metformin in colonic tissue of subjects with diabetes or the metabolic syndrome. Gastroenterology. 2018;154(5):1543–5. https://doi.org/10.1053/j.gastro.2017.12.040.
Article
PubMed
Google Scholar
Sakar Y, Meddah B, Faouzi MY, Cherrah Y, Bado A, Ducroc R. Metformin-induced regulation of the intestinal d-glucose transporters. J Physiol Pharmacol. 2010;61(3):301–7.
PubMed
CAS
Google Scholar
Nazreen S, Kaur G, Alam MM, Shafi S, Hamid H, Ali M, et al. New flavones with antidiabetic activity from Callistemon lanceolatus DC. Fitoterapia. 2012;83(8):1623–7.
Article
PubMed
CAS
Google Scholar
Muller U, Stubl F, Schwarzinger B, Sandner G, Iken M, Himmelsbach M, et al. In vitro and in vivo inhibition of intestinal glucose transport by guava (Psidium Guajava) extracts. Mol Nutr Food Res. 2018;62(01):1–11.
Google Scholar