Reaven GM, Bernstein R, Davis B, Olefsky JM. Nonketotic diabetes mellitus: insulin deficiency or insulin resistance? Am J Med. 1976;60:80–8.
Article
CAS
PubMed
Google Scholar
Dsouza DO, Lakshmidevi N. Models to study in-vitro antidiabetic activity of plants: a review. Int J Pharma Bio Sci. 2015;6:732–41.
Google Scholar
Shobana S, Sreerama YN, Malleshi NG. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem. 2009;115:1268–73.
Article
CAS
Google Scholar
Thilagam E, Parimaladevi B, Kumarappan C, Mandal SC. α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. J Acupunct Meridian Stud. 2013;6:24–30.
Article
PubMed
Google Scholar
Wang H, Du YJ, Song HC. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem. 2010;123:6–13.
Article
CAS
Google Scholar
Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, haw.). Food Chem. 2008;106:247–52.
Article
CAS
Google Scholar
Joubert PH, Venter HL, Foukaridis GN. The effect of miglitol and acarbose after an oral glucose load: a novel hypoglycaemic mechanism? Br J Clin Pharmacol. 1990;30:391–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaku K. Efficacy of voglibose in type 2 diabetes. Expert Opin Pharmacother. 2014;15:1181–90.
Article
CAS
PubMed
Google Scholar
Uchida R, Nasu A, Tokutake S, KasaI K, Tobe K, Yamaji N. Synthesis of new N-containing maltooligosaccharides, α-amylase inhibitors, and their biological activities. Chem Pharm Bull. 1999;47:187–93.
Article
CAS
Google Scholar
Cheng A. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J. 2005;172:213–26.
Article
Google Scholar
Maruhama Y, Nagasaki A, Kanazawa Y, Hirakawa H, Goto Y, Nishiyama H, et al. Effects of a glucoside-hydrolase inhibitor (bay g 5421) on serum lipids, lipoproteins and bile acids, fecal fat and bacterial flora, and intestinal gas production in hyperlipidemic patients. Tohoku J Exp Med. 1980;132:453–62.
Article
CAS
PubMed
Google Scholar
Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol. 2004;92:1–21.
Article
CAS
PubMed
Google Scholar
Harlev E, Nevo E, Mirsky N, Ofir R. Antidiabetic attributes of desert and steppic plants: a review. Planta Med. 2013;79:425–36.
Article
CAS
PubMed
Google Scholar
Chen J, Mangelinckx S, Adams A, Wang ZT, Li WL, De Kimpe N. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Nat ProdCommu. 2015;10:187–200.
CAS
Google Scholar
Subramani R, Gonzalez E, Nandy SB, Arumugam A, Camacho F, Medel J, et al. Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway. Oncotarget. 2017;8:10891.
Article
PubMed
Google Scholar
Ferraris FK, Moret KH, Figueiredo AB, Penido C, Maria das Graças MO. Gedunin, a natural tetranortriterpenoid, modulates T lymphocyte responses and ameliorates allergic inflammation. Int Immunopharmacol. 2012;14:82–93.
Article
CAS
PubMed
Google Scholar
Conte F, Ferraris F, Costa T, Pacheco P, Seito L, Verri W, et al. Effect of gedunin on acute articular inflammation and hypernociception in mice. Molecules. 2015;20:2636–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tom S, Rane A, Katewa A, Chamoli M, Matsumoto R, Andersen J, et al. Gedunin inhibits oligomeric Aβ1–42-induced microglia activation via modulation of Nrf2-NF-κB Signalling. Mol Neurobiol. 2019;56:7851–62.
Article
CAS
PubMed
Google Scholar
Ponnusamy S, Haldar S, Mulani F, Zinjarde S, Thulasiram H, RaviKumar A. Gedunin and Azadiradione: human pancreatic alpha-amylase inhibiting Limonoids from neem (Azadirachta indica) as anti-diabetic agents. PLoS One. 2015. https://doi.org/10.1371/journal.pone.0140113.
Begum SMF, Fathima SZ, Priya S, Sundarajan R, Srinivasan H. Screening Indian medicinal plants to control diabetes – an in silico and in vitro approach. Gen Med (Los Angeles). 2017. https://doi.org/10.4172/2327-5146.1000289.
Li H, Li C. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein. J Comput Chem. 2010. https://doi.org/10.1002/jcc.21486.
Morris G, Huey R, Lindstrom W, Sanner M, Belew R, Goodsell D, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kennedy J, Eberhart R. Particle swarm optimization. Proc IEEE Int Conference Neural Netw. 1995. https://doi.org/10.1109/ICNN.1995.488968.
Shi Y, Eberhart R. A modified particle swarm optimizer. IEEE Int Confer Evolution Computation. 1998. https://doi.org/10.1109/icec.1998.699146.
Brayer G, Luo Y, Withers S. The structure of human pancreaticα-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci. 1995;4:1730–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramasubbu N, Paloth V, Luo Y, Brayer G, Levine M. Structure of human salivary α-amylase at 1.6 Å resolution: implications for its role in the Oral cavity. Acta Crystallogr D Biol Crystallogr. 1996;52:435–46.
Article
CAS
PubMed
Google Scholar
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2018;47:D1102–9.
Article
PubMed Central
Google Scholar
Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306–17.
Article
CAS
Google Scholar
Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36:3219–28.
Article
CAS
Google Scholar
Ghosh S, Ahire M, Patil S, Jabgunde A, Bhat Dusane M, Joshi B, et al. Evid based complement Alternat. Med. 2012. https://doi.org/10.1155/2012/929051.
Mathew J, Vazhacharickal PJ, Sajeshkumar NK. Behaviour of salivary amylase in various reaction environments with reference to km and vmax. An overview. 1st ed. Germany: Grin Verlag; 2017.
Google Scholar
Miller G. Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8.
Article
CAS
Google Scholar
Wickramaratne M, Punchihewa J, Wickramaratne D. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement Altern Med. 2016;16:466.
Article
PubMed
PubMed Central
Google Scholar
Cirillo VP. Mechanism of glucose transport across the yeast cell membrane. J Bacteriol. 1962;84:485–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rehman G, Hamayun M, Iqbal A, Ul Islam S, Arshad S, Zaman K, et al. In vitro antidiabetic effects and antioxidant potential of Cassia nemophila pods. Biomed Res Int. 2018. https://doi.org/10.1155/2018/1824790.
Brandt G, Schmidt M, Prisinzano T, Blagg B. Gedunin, a novel Hsp90 inhibitor: Semisynthesis of derivatives and preliminary structure−activity relationships. J Med Chem. 2008;51:6495–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Gao J, Kosinski P, Elliman S, Hughes T, Gromada J, et al. Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem Biophys Res Commun. 2013;430:1109–13.
Article
CAS
PubMed
Google Scholar
Thomas Ratajczak T, Ward B, Walsh J, Cluning C. Hsp90 as a therapeutic target in endocrinology: current evidence. Res Rep Endocr Disord. 2015;5:141.
Google Scholar
Ramasubbu N, Ragunath C, Mishra P, Thomas L, Gyemant G, Kandra L. Human salivary alpha-amylase Trp58 situated at subsite −2 is critical for enzyme activity. Eur J Biochem. 2004;271:2517–29.
Article
CAS
PubMed
Google Scholar
Ragunath C, Manuel S, Kasinathan C, Ramasubbu N. Structure-function relationships in human salivary α-amylase: role of aromatic residues in a secondary binding site. Biologia. 2008;63:1028–34.
Article
CAS
Google Scholar
Nazaruk J, Borzym-Kluczyk M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev. 2014;14:675–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gutierrez R, Guzman M. Meliacinolin: a potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Biol Pharm Bull. 2012;35:1516–24.
Article
Google Scholar
Truscheit E, Frommer W, Junge B, Mueller L, Schmidt D, Wingender W. Cheminform abstract: chemistry and biochemistry of microbial α-glucosidase inhibitors. Chemischer Informationsdienst; 1981. https://doi.org/10.1002/anie.198107441.
Book
Google Scholar
Itsuo S, Makoto O, Tomio Y, Atsushi O, Choitsu S, Hosai Y, et al. Effect of α-glucosidase inhibitor on human pancreatic and salivary α-amylase. Clin Chim Acta. 1981;117:145–52.
Article
Google Scholar
Nagaraj R, Pattabiraman T. Purification and properties of an α-amylase inhibitor specific for human pancreatic amylase from proso (Panicium miliaceum) seeds. J Biosci. 1985;7:257–68.
Article
CAS
Google Scholar
Maier A, Volker B, Boles E, Fuhrmann G. Characterisation of glucose transport in with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2002;2:539–50.
CAS
PubMed
Google Scholar
Kwon O, Eck P, Chen S, Corpe C, Lee J, Kruhlak M, et al. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J. 2007;21:366–77.
Article
CAS
PubMed
Google Scholar
McCreight L, Bailey C, Pearson E. Metformin and the gastrointestinal tract. Diabetologia. 2016;59:426–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ríos J, Francini F, Schinella G. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015;81(12/13):975–94.
Article
PubMed
CAS
Google Scholar