Skip to main content

International Journal of Phytomedicine and Phytotherapy

  • Original contribution
  • Open access
  • Published:

Variation for caffeic acid and phenolic content in different plant parts of Solanum xanthocarpum Schrad. and Wendl. – a commercially important dashmool species

Abstract

Background

Environmental factors have profound effect on quantity vis-a-vis quality of phytochemicals in medicinal plants. Solanum xanthocarpum Schrad. and Wendl. is among the 10 dashmool species which is utilized in more than hundreds of Ayurvedic preparations including ‘Dashmoolarishta’. Phenolics are the pharmacologically valuable compounds. Therefore, the present study was undertaken to assess the total phenolic (TP) and Caffeic acid (CA) contents in four different plant parts i.e., leaves, fruits, stem and roots of S. xanthocarpum sampled randomly from different locations of Madhya Pradesh, a central Indian state.

Methods

Plant samples were collected from 99 places of 29 districts falling in 11 agroclimatic regions of Madhya Pradesh through random sampling. UV-VIS spectrophotometer and HPTLC were used to determine TP and CA contents, respectively. Phytochemical screening was carried out using standard methods.

Results

Preliminary phytochemical screening indicates the presence of alkaloids, cardiac glycosides, flavonoids, phenols, steroids and terpenoids in all plant parts. Quantification of TP and CA contents revealed that both varied significantly between agroclimatic zones as well as within plant parts of S. xanthocarpum. Results revealed that among analysed plant parts, roots and stem harbored highest content of CA while fruits and leaves had the highest TP content. Among agroclimatic regions, accessions of Satpura plateau can be considered rich in CA and TP contents for fruits (0.030%; 28.70 mg CE/g), leaves (0.058%; 27.90 mg CE/g) and roots (0.161%; 5.17 mg CE/g). For stem, highest CA (0.100%) and TP (13.23 mg CE/g) contents were observed in samples of Malwa Plateau and Central Narmada Valley, respectively.

Conclusion

We conclude that agroclimatic regions have significant effect on studied phytochemicals and Satpura plateau agroclimatic zone may be targeted for conservation and sustainable utilization of this valuable dashmool species if the target plant parts are fruits, leaves and roots. While, Malwa Plateau and Central Narmada Valley zones may be targeted for stem. Further, fruits and roots may be utilized for extraction of TP compounds and CA respectively.

Background

Solanum xanthocarpum Schrad. and Wendl., commonly known as Kantakari or Yellow Berried Night Shade, is a perennial herb of Solanaceae family. It is one of the dashmool species having an important place among medicinal herbs since ancient times. It is distributed to plains and lower hills of India and is abundantly available in Madhya Pradesh, a central Indian state [1].

All plant parts of this species are useful and reported to have medicinal properties [2]. Fruits of this herb are the source of solasodine, a valuable natural precursor of several commercial steroidal drugs such as corticosteroids, antifertility drugs, anabolic steroids and sex hormones [3, 4]. Fruits have also been reported to contain several medicinal properties like anthelmintic, antipyretic, anti-inflammatory, antitumor, cytotoxic, anti-asthmatic, antispasmodic, antidiabetic, hypotensive [5,6,7]. Flowers, fruits and stem are prescribed for relief during burning sensation in the feet [8]. Paste of leaves are used to relieve body or muscle pain; while its juice mixed with black pepper is advised for rheumatism [9]. Roots of the plant are used in formulation of “Dashmoolarishta”, a well-established ayurvedic drug of Indian system of medicine utilized for treating general fatigue, oral sores and various gynecological disorders [10,11,12,13]. Due to various medicinal properties, annual demand of this herb is approximately 500–1000 MT per annum [14].

Phytochemical and pharmacological studies proved that S. xanthocarpum is rich in steroids, flavanoids, phenolics, coumarins and major one includes CA, lupeol, carpesterol, solanocarpine, solasonine, solamargine, and diosgenin [15]. CA (3, 4-dihydroxycinnamic acid) is one of the most commonly found phenolics in a wide range of medicinal plants and found effective in treatment of a number of chronic diseases [16, 17]. In S. xanthocarpum, CA was first identified in the berries [18] and in roots [19]. Other plant parts of this commercially important medicinal herb were not assessed for this valuable compound.

Considering vast medicinal importance of this species, present investigation was undertaken to assess agroclimatic region wise variability exist in CA and TP contents in S. xanthocarpum. Additionally, variations in CA and TP were also assessed in different plant parts of this herb. Our hypothesis was that climatic factors have profound effect on the quantity of phytochemicals which also vary in plant parts of the species.

Methodology

Chemicals and solvents

All the chemicals and solvents used in the study were of analytical grade and chromatography grade. Standard Caffeic acid (98%) was purchased from Sigma Aldrich, India. Aluminum packed thin layer chromatography (TLC) plates precoated with silica gel 60 F254 (20 × 20 cm, 0.2 mm layer thickness) were purchased from E. Merck Ltd. (Darmstadt, Germany).

Collection and authentication of plant material

Different plant parts (fruits, leaves, roots and stem) of this species were collected from 99 locations of 29 districts belonging to 11 agroclimatic regions by following random sampling (Fig. 1). From each agroclimatic region 9 samples were collected on random basis. For confirmation of the species, herbarium of collected specimens was prepared and get authenticated from the Biodiversity and Sustainable Division of Tropical Forest Research Institute, Jabalpur (Identification no. 1760).

Fig. 1
figure 1

Mapping for collection sites of Solanum xanthocarpum

Processing of plant materials

Plant parts were separated and brought to the laboratory. These were washed thoroughly in running water to remove soil and other foreign particles. Stem and roots were cut into small pieces. All samples were dried in shade and powdered. Equal amount of nine samples of all plant part collected from each agroclimatic region were pooled separately and was made for making extracts and chemical analysis.

Phytochemical screening

One hundred milligram of dried and powdered plant material, each of stem, leaves, fruits and roots of S. xanthocarpum was soaked overnight in 25 ml of different solvents namely water, methanol, ethanol, petroleum ether, chloroform, diethyl ether and ethyl acetate. Different extracts were filtered and filtrates were used for qualitative phytochemical screening following standard methods [20, 21].

Determination of Total Phenolic (TP) content

TP content was determined by Folin-Ciocalteau method [22, 23]. A quantity of 0.5 g of powdered sample was taken in a motor and pestle and grinded in 10 times volume of 80% ethanol. The homogenate was then centrifuged at 10,000 rpm of 20 min. The supernatant was then evaporated to dryness. The residue was dissolved in a 20 ml of distilled water. Zero point two millilitre of sample was then taken in test tube and volume made up to 3 ml with distilled water. Zero point five millilitre of Folin-Ciocalteau reagent was then added. After 3 min, 2 ml of 20% sodium carbonate solution was added to each tube, mixed thoroughly, placed in boiling water for exactly 1 min, cooled and absorbance was taken at 650 nm against blank. TP content was determined from the linear equation of a standard curve of catechol and expressed as mg of catechol equivalent per g of dry extract weight.

High Performance Thin Layer Chromatography (HPTLC) densitometric determination of CA content

Ten microliter of each test sample in triplicate and various volumes of standard CA (4, 6, 8, 10 and 12 μl corresponding to 40, 60, 80, 100 and 120 ng respectively of CA per spot) were applied on HPTLC plate. Plates were analyzed and the concentration of CA in each extract was calculated as per given method [24].

Data interpretation and comparative studies

Data was subjected to descriptive statistics and analysis of variance using Windostat Ver 9.1 Software (Indostat, Hyderabad, India).

Results

Critical perusal of the results of phytochemical screening of fruits, leaves, roots and stem of S. xanthocarpum (Table 1) revealed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, steroids and terpenoids in all the plant parts while saponins were present in fruits and leaves only. Tannins were not detected in any plant part.

Table 1 Phytochemical screening of different parts of Solanum xanthocarpum Schrad. and Wendl

Analysis revealed significant variations for CA and TP content within and between agroclimatic zones as well as among plant parts of S. xanthocarpum collected from 11 different agroclimatic regions of Madhya Pradesh state. Estimates of CA and TP contents in leaves, fruits, roots and stem of S. xanthocarpum are summarized in Table 2. TP content in fruits, leaves, roots and stem collected from 11 agroclimatic regions varied from 7.63–28.70, 7.02–27.90, 2.17–5.40 and 3.41–13.23 mg CE/g, respectively. Fruits, leaves, roots of Satpura plateau and stem of Central Narmada Valley were found to contain higher TP content i.e., 28.70, 27.90, 5.17 and 13.23 mg CE/g, respectively. Whereas, fruits and leaves of Nimar valley, roots of Grid zone and stem of Vindhya plateau were found to contain lower TP content i.e., 7.63, 7.02, 2.17 and 3.41 mg CE/g, respectively. On overall comparison, fruits of Satpura plateau region contained highest TP content (28.70 mg CE/g) whereas roots of Grid zone contained the lowest (2.17 mg CE/g).

Table 2 TPC and CAC in fruits, leaves, roots and stem of S. xanthocarpum. Schrad. and Wendl

With regard to CA content, it varied from 0.004–0.031%, 0.002–0.078%, 0.002–0.161% and 0.011–0.100% in fruits, leaves, roots and stem respectively. Fruits of Chhattisgarh plains, leaves of Bundelkhand zone, roots of Satpura Plateau and stem of Malwa Plateau contained higher content as 0.031%, 0.078%, 0.161% and 0.100%, respectively while fruits of Vindhya Plateau, leaves of Central Narmada Valley, roots of Grid zone, stem of Vindhya plateau and Central Narmada Valley had lower CA content as 0.006%, 0.002%, 0.002% and 0.011% respectively. Among all plant parts, roots samples of Satpura Plateau recorded highest CA content (0.161%). Representative HPTLC profiles, HPTLC densitometric 3D image and spectral pattern of tracks of 03 samples applied in triplicate and five tracks of different concentrations of CA standard are given as Figs. 2, 3 and 4 respectively.

Fig. 2
figure 2

HPTLC profiles of test samples and caffeic acid standard

Fig. 3
figure 3

HPTLC densitometric 3D image of tracks on HPTLC plate

Fig. 4
figure 4

Overlain spectrum of test samples with CA standard, scanned at 330 nm

Discussion

Phytochemical screening helps in isolating and characterizing the chemical constituents present in the plant extracts and the knowledge of the chemical constituents of plants is desirable to understand herbal drugs, their preparations and finally in discovering the actual value of folkloric remedies. These phytochemicals (alkaloids, cardiac glycosides, flavonoids, phenols, steroids, terpenoids and saponins) were reported to have a number of biological activities and protect humans from most of the chronic diseases [25]. Our results of phytochemical screening are in agreement with the earlier findings [26,27,28]. Similar variations in TP content in different plant parts of S. xanthocarpum were also noticed in previous studies [28, 29].

Estimates of CA and TP did not exhibit positive relationship because TP represents all types of phenolic compounds found in plants along with CA. Besides, environmental factors such as temperature, altitude, soil, rainfall, humidity, drought, light intensity, high salinity, supply of water, minerals, freezing temperatures and CO2 also affects concentrations of secondary metabolites [30,31,32,33,34,35]. Stressed conditions are well known to trigger the accumulation of secondary metabolites which help the plants to adapt and overcome stresses [36]. Similar variations in phytochemicals in Solaum indiucm [37], Uraria picta [38], Gloriosa superba [39] and Hemidesmus indicus [40] sampled from different agro-climatic regions of central India were also observed.

Analysis of variance revealed that estimates of CA and TP varied significantly within the plant parts i.e., fruits, leaves, stem, roots samples and also among the agroclimatic regions. This indicates the importance of selection of plant parts used for commercial exploitation as well as revealed the environmental effect on yield of chemical constituents. However, trend is not consistent for TP and CA contents in different plant parts across the agroclimatic regions. CA and its phenyl esters were reported to have strong biological activities such as antitumor activity in-vivo and in-vitro both, anti-platelet activity, acute pneumonitis, neuro protective, antioxidant, anti-microbial, antidepressant, anxiolytics, anti-inflammatory, analgesics, anti-cancer, potent collagen antagonist, anti-hypertensive, anti-ischemia reperfusion, anti-thrombosis, anti-hypertension, anti-fibrosis, anti-hyperglycemic etc [41,42,43,44,45,46,47].

Hence, quantification of CA in all plant parts of S. xanthocarpum added value to its pharmacological potential to utilize it in Ayurvedic formulations. Present investigation on S. xanthocarpum will help in its collection from the appropriate locations for sustainable utilization and undertaking conservation programmes.

Conclusion

Present work is the first comprehensive investigation presenting variations in TP and CA contents in plant parts of S. xanthocarpum belonging to different agroclimatic regions of Madhya Pradesh state of India. We conclude that samples from Satpura plateau region of state contains highest TP and CA content. Findings of the present study will help in efficient utilization as well as conservation cum improvement programmes of S. xanthocarpum.

Availability of data and materials

Not applicable.

Abbreviations

TP:

Total phenolic

CA:

Caffeic acid

AR:

Analytical reagent; min: minutes

References

  1. Gunaselvi G, Kulasekaren V, Gopal V. Anthelmintic activity of the extracts of Solanum xanthocarpum Schrad and Wendl fruits (Solanaceae). Int J Pharmtech Res. 2010;2:1772–4.

    Google Scholar 

  2. Preet R, Gupta RC. HPTLC analysis of Solanum xanthocarpum Schrad and Wendl. a siddha medicinal herb. Adv Pharmacol Pharm Sci. 2018;2018:1–6.

  3. Bector NP, Puri AS. Solanum xanthocarpum (Kantakari) in chronic bronchitis bronchial asthma and non-specific unproductive cough (an experimental and clinical co-relation). J Assoc Phys India. 1971;19:741–4.

    CAS  Google Scholar 

  4. Parmar S, Gangwal A, Sheth N. Solanum xanthocarpum (yellow berried night shade): a review. Der Pharm Lett. 2010;2:373–83.

    CAS  Google Scholar 

  5. Nadkarni A. Nadkarni’s Indian Materia Medica; 1954.

    Google Scholar 

  6. Sinha SC. Medicinal plants of Manipur Mass and Sinha publications, Manipur India; 1996. p. 172.

    Google Scholar 

  7. Joy P, Thomas J, Mathew S, Skaria B, Bose TK, Kabir J, et al. Tropical Horticulture Medicinal Plants Naya Prakash Calcutta; 2001.

  8. Paul R, Datta KA. An updated overview on Solanum xanthocarpum Schrad and Wendl. Int J Res Ayurveda Pharm. 2011;2(3):730–5.

    Google Scholar 

  9. Sharma N, Sharma AK, Zafar R. Kantikari: a prickly medicinal weed~ Ecosensorium. J Phytol Res. 2010;9:13–7.

    Google Scholar 

  10. Kirtikar KR, Basu BD. Indian medicinal plants. Dehradun: International Book Publishers Dehradun; 1993. p. 2

  11. Yusuf M, Chowdhury JU, Wahab MA, Begum J. Medicinal Plants of Bangladesh BCSIR Laboratories Chittagong Bangladesh; 1994. p. 56.

    Google Scholar 

  12. Billore KV, Yelne MB, Dennis TJ, Chaudhari BG. Database on medicinal plants used in Ayurveda Vol 6 Central Council for Research in Ayurveda and Siddha New Delhi; 2004. p. 314–20.

    Google Scholar 

  13. Yadav AK, Yadav D, Shanker K, Verma RK, Saxena AK, Gupta MM. Flavone glycoside based validated RP-LC method for quality evaluation of Prishniparni (Uraria picta). Chromatographia. 2009;69(7-8):653–8. https://doi.org/10.1365/s10337-009-0963-9.

    Article  CAS  Google Scholar 

  14. Anonymous. Demand of medicinal plants https://www.nmpbnicin/medicinal_list. Literature searched in December, 2020.

  15. Tekuri SK, Pasupuleti SK, Konidala KK, Amuru SR, Bassaiahgari P, Pabbaraju N. Phytochemical and pharmacological activities of Solanum surattense Burm. F.–a review. J Appl Pharm Sci. 2019;9(03):126–36.

    Article  CAS  Google Scholar 

  16. Dai J, Mumper RJ. Plant Phenolics: extraction analysis and their antioxidant and anticancer properties. Molecules. 2010;15(10):7313–52. https://doi.org/10.3390/molecules15107313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim J, Lee KW. Coffee and its Active Compounds are Neuroprotective Coffee in Health and Disease Prevention. Cambridge: Academic Press; 2015. p. 423–7.

  18. Siddiqui S, Faizi S, Shaheen B. Studies in the chemical constituents of the fresh berries of Solanum xanthocarpum Schrad. & Wendle. J Chem Soc Pakistan. 1983;5:99–102.

    CAS  Google Scholar 

  19. Bhatt B. Chemical constituents of Solanum xanthocarpum. J Chem Pharm Res. 2011;3:176–81.

    CAS  Google Scholar 

  20. Harborne JB. Phytochemical methods: a guide to modern techniques of plants analysis. London: Chapman and Hall London; 1998.

  21. Trease GE, Evans WC. A text book of Pharmacognosy. 13th ed. London: Bacilliere Tinall Ltd; 1989.

    Google Scholar 

  22. Singleton VL, Rossi JA. Colorimetry of Total Phenolics with phosphomolybdic - phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144–58.

    CAS  Google Scholar 

  23. Madhavan M. Quantitative estimation of total phenols and antibacterial studies of leaves extracts of Chromolaena odorata (L) king & H E robins. Int J Herb Med. 2015;3:20–3.

    Google Scholar 

  24. Anonymous. Quality Standards of Indian Medicinal Plants, vol. 1. New Delhi: An ICMR Publication; 2003. p. 198–209.

    Google Scholar 

  25. Saxena HO, Soni A, Mohammad N, Choubey SK. Phytochemical screening and elemental analysis in different plant parts of Uraria picta Desv.: a Dashmul species. J Chem Pharm Res. 2014;6:756–60.

    Google Scholar 

  26. Neelima N, Devidas NG, Sudhakar M, Jadghav KV. A preliminary phytochemical screening of the leaves of Solanum xanthocarpum. Int J Res Ayurveda Pharm. 2011;2:845–50.

    Google Scholar 

  27. Nitesh KM, Maan AS, Goyal S, Bansal G. Pharmacognostic phytochemical studies and anti-anxiety activity of Uraria picta leaves. Int J Drug Discov. 2012;1:6–9.

    Google Scholar 

  28. Sundari SG, Rekha S, Parvathi A. Phytochemical evaluation of three species of Solanum L. Int J Res Ayurveda Pharm. 2013;4(3):420–5. https://doi.org/10.7897/2277-4343.04323.

    Article  Google Scholar 

  29. Yadav A, Bhardwaj R, Sharma RA. Free radical scavenging potential of the Solanum surattense Burm F: an important medicinal plant. Int J Pharm Pharm Sci. 2014;6:39–42.

    Google Scholar 

  30. Garg SN, Bansal RP, Gupta MM, Kumar S. Variation in the rhizome essential oil and curcumin contents and oil quality in the land races of turmeric Curcuma longa of north Indian plains. Flavour Fragr J. 1999;14(5):315–8. https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<315::AID-FFJ838>3.0.CO;2-U.

    Article  CAS  Google Scholar 

  31. Morison JIL, Lawlor DW. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ. 1999;22(6):659–82. https://doi.org/10.1046/j.1365-3040.1999.00443.x.

    Article  CAS  Google Scholar 

  32. Pothitirat W, Gritsanapan W. Variation of bioactive components in Curcuma longa in Thailand. Curr Sci. 2006:1397–400.

  33. Payyavula RS, Navarre DA, Kuhl JC, Pantoja A, Pillai SS. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol. 2012;12(1):39. https://doi.org/10.1186/1471-2229-12-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anandaraj M, Prasath D, Kandiannan K, Zachariah TJ, Srinivasan V, Jha AK, et al. Genotype by environment interaction effects on yield and curcumin in turmeric (Curcuma longa L). Ind Crop Prod. 2014;53:358–64. https://doi.org/10.1016/j.indcrop.2014.01.005.

  35. Sandeep IS, Sanghamitra N, Sujata M. Differential effect of soil and environment on metabolic expression of turmeric (Curcuma longa cv Roma). Indian J Exp Biol. 2015;53(6):406–11.

    CAS  PubMed  Google Scholar 

  36. Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011;6(11):1720–31. https://doi.org/10.4161/psb.6.11.17613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saxena HO, Pawar G. TP and CA contents in roots of Solanum indicum L from different agroclimatic regions of Madhya Pradesh state of India. Indian J Pharm Educ Res. 2019;53(2s):S164–9. https://doi.org/10.5530/ijper.53.2s.62.

    Article  CAS  Google Scholar 

  38. Saxena HO, Mohan B, Kakkar A. Assessment of variation in rhoifolin content in aerial parts of Uraria picta Desv from different locations of Madhya Pradesh. J Pharm Res. 2016;10:185–90.

    CAS  Google Scholar 

  39. Saxena HO, Mohan B, Kakkar A, Ganesh. Variation in colchicine content in tubers of Gloriosa superba L from Madhya Pradesh for identification of elite chemotypes. Int J Chem Stud. 2017;5:2278–82.

    Google Scholar 

  40. Saxena HO, Mohan B, Kakkar A, Pawar G. Chemotypic variation of lupeol in roots of Hemidesmus indicus (L) R Br from different agroclimatic regions of Madhya Pradesh state of India. Curr Tradit Med. 2017;3:29–37.

    Article  CAS  Google Scholar 

  41. Ilyas UK, Katare DP, Ambardar N, Aeri V. HPTLC densitometric quantification of caffeic acid and boeravinone B in Boerhavia diffusa Linn. Int J Phytopharm. 2013;4:184–9.

    Google Scholar 

  42. Bhimani RS, Troll W, Grunberger D, Frenkel K. Inhibition of oxidative stress in HeLa cells by chemo preventive agents. Cancer Res. 1993;53(19):4528–33.

    CAS  PubMed  Google Scholar 

  43. Sudina GF, Mirzoeva NV, Pushkareva MA, Korshunova GA, Sumbatyan NV, Vafolomeev SD. CA phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. Fed Eur Biochem Soc. 1993;329(1-2):21–4. https://doi.org/10.1016/0014-5793(93)80184-V.

    Article  CAS  Google Scholar 

  44. Natarajan K, Singh S, Burke TR, Grunberger D, Aggarwal BB. CA phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-KB. Proc Natl Acad Sci. 1996;93(17):9090–5. https://doi.org/10.1073/pnas.93.17.9090.

    Article  CAS  PubMed  Google Scholar 

  45. Jaiswal AK, Venugopal R, Mucha J, Carothers AM, Grunberger D. CA phenethyl ester stimulates human antioxidant response element-mediated expression of the NAD (P) H: quinone oxidoreductase (NQO1) gene. Cancer Res. 1997;57(3):440–6.

    CAS  PubMed  Google Scholar 

  46. Michaluart P, Masferrer JL, Carothers AM, Subbaramaiah K, Zweifel BS, Koboldt C, et al. Inhibitory effects of CA phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res. 1999;59(10):2347–52.

  47. Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV. Inhibitory effect of CA on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem. 2011;349(1-2):11–9. https://doi.org/10.1007/s11010-010-0655-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, TFRI for providing necessary facilities to carry out the presented work. Financial support was extended by Indian Council of Forestry Research & Education, Dehradun, India [Project ID: 176/TFRI/2011/NWFP-1(29)].

Funding

Financial support was extended by Indian Council of Forestry Research & Education, Dehradun, India [Project ID: 176/TFRI/2011/NWFP-1(29)].

Author information

Authors and Affiliations

Authors

Contributions

HOS planned and executed the work and prepared the manuscript. SP and NM edited the manuscript. GP performed experiments in the laboratory. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Hari Om Saxena.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, H.O., Parihar, S., Mohammad, N. et al. Variation for caffeic acid and phenolic content in different plant parts of Solanum xanthocarpum Schrad. and Wendl. – a commercially important dashmool species. Clin Phytosci 7, 53 (2021). https://doi.org/10.1186/s40816-021-00286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s40816-021-00286-0

Keywords