Skip to main content

International Journal of Phytomedicine and Phytotherapy

Diosgenin and galactomannans, natural products in the pharmaceutical sciences

Abstract

Background

Diosgenin is an isospirostane derivative, which is a steroidal sapogenin and the product of acids or enzymes hydrolysis process of dioscin and protodioscin. Galactomannans are heteropolysaccharides composed of D-mannose and D-galactose, which are major sources of locust bean, guar, tara and fenugreek.

Methods

Literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web of knowledge and Google Scholar.

Results

Four major sources of seed galactomannans are locust bean (Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (T.foenum-graecum). Diosgenin has effect on immune system, lipid system, inflammatory and reproductive systems, caner, metabolic process, blood system, blood glucose and calcium regulation. The most important pharmacological benefits of galactomannan are antidiabetic, antioxidant, anticancer, anticholinesterase, antiviral activities, and appropriate for dengue virus and gastric diseases.

Conclusions

Considering the importance of diosgenin and galactomannans, the obtained findings suggest potential of diosgenin and galactomannans as natural products in pharmaceutical industries.

Introduction

Natural products from herbal medicines, particularly traditional Iranian and Chinese medicines have found to be effective for many diseases [1,2,3,4]. Medicinal plants and traditional herbal remedies have been gaining considerable attention in these years because of accessibility, affordability, their safety, promising efficacy and being eco-friendly [5,6,7,8,9]. Galactomannans are heterogeneous polysaccharides comprising a β-(1 → 4) d-mannose backbone branched with α-(1 → 6) linked d-galactose monomeric units. Galactomannans,s nature defined by the parameters, such as intrinsic viscosity, M/G ratio, fine structure and average molecular weight, and it is considered as the natural polysaccharides which are used as the stabilizer, emulsifier and thickener in the food industries. Galactomannans belongs to a family of seed gums and present polymers of galactose and mannose. Diosgenin, a triterpenoid having two pentacyclic rings especially found in fenugreek (Trigonellafoenum-graecum L. - Leguminosae) and roots of wild yam (Dioscoreavillosa L. - Dioscoreaceae), and considered as an antihyperglycemic, antidiabetes, antihypertriacylglycerolemia, and antihypercholesterolemic agent, especially in traditional Chinese medicine. It is biosynthesized from cholesterol via the isoprenoid pathway which involves several steps but starts with acetyl CoA. Galactomannans and Diosgenins are main bioactive components of medicinal plants such as fenugreek. The goal of this manuscript is survey on the most important health benefits and pharmaceutical advantages of galactomannan and diosgenin with considering traditional knowledge of natural products.

Galactomannans

Galactomannans are naturally occurring biocompatible and biodegradable nonionic polysaccharides consisted of mannose and galactose residues, which are commercially isolated from the seeds of guar, carob, fenugreek and tara plants [10,11,12,13,14,15]. Galactomannans are under investigation for the design of various drug delivery carriers such as matrix tablets, microparticles, nanoparticles, polymeric micelles, hydrogels and different pharmaceutical excipients [16, 17], like galactomannan extracted from Trigonella persica (Boiss.) E. Small (Leguminosae) endosperm which is useful in the medicine and pharmaceutical industry [18]. In green and immature seed of Gleditsia sinensis Lam. (Leguminosae) tree, galactomannan was substituted to a great extent with a mannose to galactose (M/G) ration of 2.4 from crude polysaccharides [19]. The seed galactomannan of Bauhinia monandra Kurz (Leguminosae), Bauhinia vahlii Wight & Arn. (Leguminosae), Citrullus colocynthis (L.) Schrad. (Cucurbitaceae), Delonix elata Gamble (Leguminosae), Leucaena leucocephala (Lam.) de Wit (Leguminosae), and Peltophorum pterocarpum (DC.) K. Heyne (Leguminosae) could be explored as an effective alternative to commercial galactomannans for industrial purposes [20,21,22,23,24]. Galactomannans from Prosopis affinis Spreng (Leguminosae), seeds has shown molecular weight distribution and intrinsic viscosity similar to those of commercial gums [25]. Galactomannan from fenugreek attributes depicted a very food candidacy for industrial application [26, 27]. Liu et al. [28] reported that degradation of galactose was slightly easier than that of mannose. Galactomannans of G.sinensis, fenugreek and guar galactomannans, showed a rod-like and fibrous filament network structure [29]. Galactomannans fraction from Gleditsia triacanthos L. (Leguminosae) seeds could become a suitable alternative to be used as a food texture modifier for starch-based products [30]. Coelho et al. [31] showed that galactomannan films have a large potential application into the engineering area and food science, like G. triacanthos extract which has shown to have excellent filmogenic properties [32, 33]. Galactomannan from Sesbania cannabina (Retz.) Pers. (Leguminosae) was applied for fabricate high-strength film [34]. Retama raetam (Forssk.) Webb & Berthel (Fabaceae) galactomannan can reduce the glycemic index of starchy foods [35]. Galactomannan pretreatment constitutes a novel and promising therapy to decrease local and remote damage triggered by intestinal ischemia-reperfusion injury [36]. Chemical structure of galactomannan has shown in Fig. 1. The major pharmacological effects of galactomanna have been shown in Table 1.

Fig. 1
figure1

Chemical structure of galactomannan

Table 1 The most important pharmacological effects of galactomannan

Diosgenin

Diosgenin (25R-spirost-5-en-3β-ol) (Fig. 2) is an important steroid-based compound obtained from the secondary metabolic products of plant species [45, 46], which has been proven as an important bioactive drug component due to its anti-cancer activity, anti-cardioprotective activity, anti-diabetic effects, anti-microbial effects, anti-thrombotic effects, anti-inflammatory and osteoarthritis protective activities [47,48,49,50,51,52]. Diosgenin mainly exists in plant cells in the form of the ligand of saponin, with its C3 and C26 linked to sugar chains via saponin bonds [53]. Diosgenin naturally exists in tubers of many Dioscorea or Costus genus plants and seeds of T.foenum-graecum [54], but Discoreanipponica Makino (Dioscoreaceae), a tuberous herbaceous perennial liana, is widely used as materials for diosgenin production in industries [55]. It is also found in Smilax china L. (Smilacaceae), Heterosmilax japonica Kunth (Smilacaceae), Solanumincanum L. (Solanaceae), Solanum virginianum L. (Solanaceae), Cheilocostusspeciosus (J.Koenig) C.D.Specht (Costaceae) and T. foenum graecum. On the basis in vitro and in vivo studies, diosgenin and its analogs have roles in modulating important molecular targets and signaling pathways such as Phosphoinositide 3-kinase/Protein Kinase B/Mechanistic Target of Rapamycin (PI3K/AKT/mTOR), Janus Kinases/Signal Transducer and Activator of Transcription Proteins (JAK/STAT), Factor Nuclear Kappa B (NF-κB), and Mitogen-Activated Protein Kinase (MAPK), e.g., which have vital role in the development of various diseases [56]. It is a natural phytochemical which can mitigate diabetes induced oxidative stress and dyslipidemia which is important in cardio-metabolic risks by modulating the Peroxisome proliferator-activated receptor (PPARs) [57]. Diosgenin induces apoptosis inInsulin-like Growth Factor-1(IGF-1)-treated thyrocytes through two caspase pathways, namely inhibits FLICE inhibitory proteins (FLIP), and activates Caspase-8 in FAS related-pathway and increases Reactive Oxygen Species (ROS), regulates the ration of BCL2 Associated X/B-cell lymphoma 2 (BAX/BCL-2) in mitochondrial pathway [58]. Diosgenin ameliorated endothelial dysfunction through IκB kinase β/IR substrate 1-dependent manner (IKKβ/IRS-1), and improved endothelial insulin signaling under inflammatory conditions which shows its potential application in the treatment for atherosclerosis [59]. Diosgenin has the potential to show high glucose-induced renal proximal tubular fibrosis party by modulating Epithelial-to-Mesenchymal Transition (EMT) pathway [60]. Treatment by diosgenin may provide significant improvement toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline in rats and it also prevent monocrotaline-induced changes in nitric oxide production, endothelial and inducible nitric oxide synthase protein expression and histological analysis which shows its importance in pulmonary hypertension [61]. Diosgenin restored moderately decreased sperm motility in D-galactose-treated wistar males and it can be a choice for treatment of mild age-related reproductive dysfunctions [62]. It also shows antinociceptive potential in diabetic rats through lowering oxidative stress and inflammation and improving antioxidant defense system [63]. Zolfaghari et al. [64] reported that the induction of hairy roots considerably increased the production of diosgenin as compared with the plant itself, and they have found that by converting dioscin to diosgenin, the non-specific beta-glucosidase activity of bacterial genes may lead to higher accumulation of diosgenin in hairy roots of T. foenum-graecum. Diosgenin may inhibit melanogenesis through the activation of the Phosphatidylinositol-3-kinase (PI3K) pathway, and it may be considered as an effective inhibitor of hyperpigmentation [65]. Chemical structure of diosgenin has shown in Fig. 2. The most important pharmacological effects of diosgenin are shown in Table 2.

Fig. 2
figure2

Chemical structure of diosgenin [44] (Jesus et al. 2016)

Table 2 The most important pharmacological effects of diosgenin

Conclusion

Traditional herbal medicines have been considered as a source of curative remedy due to health promote and prevent diseases, and plants are invaluable sources of new drugs. Galactomannans represent one of the most versatile classes of available materials for applications in many sectors specially pharmaceuticals. It is a group of storage polysaccharides from various plants which reserve energy for germination in the endosperm. They are with rigid hydrophilic backbone (polymannose, or mannan), and grafted galactose units. They are often used in various forms for human consumption. Four major sources of seed galactomannans are locust bean (Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (T.foenum-graecum). The most important pharmacological benefits of galactomannan are antidiabetic, antioxidant, anticancer, anticholinesterase, antiviral activities, and appropriate for dengue virus and gastric diseases. A steroidal sapogenin, occurs in plants such as Dioscoreaalata, Smilax china, and T. foenum-graecum is diosgenin. Diosgenin, a triterpenoid having two pentacyclic rings. The most important health benefits of diosgenin are anti-diabetic, anti-inflammatory, anti-obesity, antioxidant, anti-proliferative, anti-psoriasis, anti-cancer, anti-tumour, and hepatoprotective effects; it can also improve female reproduction, multiple sclerosis, and appropriate for skin aging and wound healing.

Availability of data and materials

Not applicable.

References

  1. 1.

    Sun W, Shahrajabian MH, Cheng Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol. 2019;5(1673688):1–25.

    Google Scholar 

  2. 2.

    Sun W, Shahrajabian MH, Cheng Q. The insight and survey on medicinal properties and nutritive components of shallot. J Med Plant Res. 2019;13(18):452–7.

    CAS  Article  Google Scholar 

  3. 3.

    Shahrajabian MH, Sun W, Soleymani A, Cheng Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res. 2020;2020(1):1–11.

    Google Scholar 

  4. 4.

    Shahrajabian MH, Sun W, Cheng Q. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science. Not Bot Horti Agrobot Cluj Napoca. 2020;48(4):1719–4. https://doi.org/10.15835/nbha48412002.

    CAS  Article  Google Scholar 

  5. 5.

    Sun W, Shahrajabian M, Cheng Q. Health benefits of wolfberry (Gou Qi Zi) on the basis of ancient Chinese herbalism and western modern medicine. Avicenna J Phytomed. 2021a. https://doi.org/10.22038/AJP.2020.17147.

  6. 6.

    Sun W, Shahrajabian MH, Cheng Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev Med Chem. 2021b;21:1–7. https://doi.org/10.2174/1389557520666201127104907.

    CAS  Article  Google Scholar 

  7. 7.

    Shahrajabian MH, Sun W, Cheng Q. Chemical components and pharmacological benefits of basil (Ocimum Basilicum): a review. Int J Food Prop. 2020c;23(1):1961–70. https://doi.org/10.1080/10942912.2020.1828456.

    CAS  Article  Google Scholar 

  8. 8.

    Shahrajabian MH, Sun W, Cheng Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat Prod Commun. 2020d;15(8):1–10.

    Google Scholar 

  9. 9.

    Shahrajabian MH, Sun W, Shen H, Cheng Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric Scand Sect B Soil Plant Sci. 2020e;70(5):437–43.

    CAS  Google Scholar 

  10. 10.

    Gresta F, Ceravolo G, Lo Preti V, D’Agata A, Rao R, Chiofalo B. Seed yield, galactomannan content and quality traits of different guar (Cyamopsis tetragonoloba L.) genotypes. Ind Crops Prod. 2017;107:122–9.

    CAS  Article  Google Scholar 

  11. 11.

    Gadkari PV, Reaney MJT, Ghosh S. Assessment of gelation behavior of fenugreek gum and other galactomannans by dynamic viscoelasticity, fractal analysis and temperature cycle. Int J Biol Macromol. 2019;126:337–44. https://doi.org/10.1016/j.ijbiomac.2018.12.132.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Zhang S, Fan M, Ye G, Zhang H, Xie J. Biorefinery of dioscorea composta Hemsl with ferric chloride for saponins conversion to diosgenin and recycling the waste to biomethane. Ind Crop Prod. 2019;135:122–9. https://doi.org/10.1016/j.indcrop.2019.04.040.

    CAS  Article  Google Scholar 

  13. 13.

    Kontogiorgos V. Galactomannans (guar, locust bean, fenugreek, Tara). Encycl Food Chemi. 2019;2019:109–13.

    Article  Google Scholar 

  14. 14.

    Da Silva LM, Araujo LFS, Alvez RC, Ono L, Sa DAT, da Cunha PLR, et al. Promising alternative gum: Extraction, characterization, and oxidation of the galactomannan of Cassia fistula. Int J Biol Macromol. 2020;165(Part A):436–44.

    Article  Google Scholar 

  15. 15.

    Di J, Liu B, Song X. The galactose oxidase air oxidation of galactomannans for use as paper strengthening agents. J Wood Chem Technol. 2020;40(2):105–15.

    CAS  Article  Google Scholar 

  16. 16.

    Padinjarathil H, Joseph MM, Unnikrishnan BS, Preethi GU, Shiji R, Archana MG, et al. Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. Int J Biol Macromol. 2018;118(Part A):1174–82.

    CAS  Article  Google Scholar 

  17. 17.

    Yadav H, Maiti S. Research progress in galactomannan-based nanomaterials: synthesis and application. Int J Biol Macromol. 2020;163:2113–26. https://doi.org/10.1016/j.ijbiomac.2020.09.062.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Bakhshy E, Zarinkamar F, Nazari M. Isolation, qualitative and quantitative evaluation of galactomannan during germination of Trigonella persica (Fabaceae) seed. Int J Biol Macromol. 2019;137:286–95. https://doi.org/10.1016/j.ijbiomac.2019.06.225.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Liu Y, Xu W, Lei F, Li P, Jiang J. Comparison and characterization of galactomannan at different developmental stages of Gleditsia sinensis lam. Carbohydr Poly. 2019;223:115127. https://doi.org/10.1016/j.carbpol.2019.115127.

    CAS  Article  Google Scholar 

  20. 20.

    Nwokocha LM, Senan C, Williams PA, Yadav MP. Characterization and solution properties of a galactomannan from Bauhinia monandra seeds. Int J Biol Macromol. 2017;101:904–9. https://doi.org/10.1016/j.ijbiomac.2017.03.105.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Kouadri I, Layachi A, Makhlouf A, Satha H. Optimization of extraction process and characterization of water-soluble polysaccharide (galactomannan) from Algerian biomass; Citrullus colocynthis seeds. Int J Polym Anal Charact. 2018;23(4):362–75. https://doi.org/10.1080/1023666X.2018.1455343.

    CAS  Article  Google Scholar 

  22. 22.

    Jamir K, Badithi N, Venumadhav K, Seshagirirao K. Characterization and comparative studies of galactomannans from Bauhinia vahlii, Delonixelata, and Peltophorumpterocarpum. Int J Biol Macromol. 2019;134:498–506. https://doi.org/10.1016/j.ijbiomac.2019.05.080.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Mittal N, Kaur G. Leucaena leucocephala (Lam.) galactomannan nanoparticles: Optimization and characterization for ocular delivery in glaucoma treatment. Int J Biol Macromol. 2019;139:1252–62.

    CAS  Article  Google Scholar 

  24. 24.

    Rodriguez-Canto W, Chel-Guerrero L, Fernandez VVA, Aguilar-Vega M. Delonix regia galactomannan hydrolysates: rheological behavior and physicochemical characterization. Carbohydr Polym. 2019;206:573–82. https://doi.org/10.1016/j.carbpol.2018.11.028.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Vilaro P, Bennadji Z, Budelli E, Moyna G, Panizzolo L, Ferreira F. Isolation and characterization of galactomannans from Prosopis affinis as potential gum substitutes. Food Hydrocoll. 2018;77:711–9. https://doi.org/10.1016/j.foodhyd.2017.10.038.

    CAS  Article  Google Scholar 

  26. 26.

    Rashid F, Hussain S, Ahmed Z. Extraction purification and characterization of galactomannan from fenugreek for industrial utilization. Carbohydr Polym. 2018;180:88–95. https://doi.org/10.1016/j.carbpol.2017.10.025.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ponzini E, Natalello A, Usai F, Bechmann M, Peri F, Muller N, et al. Structural characterization of aerogels derived from enzymatically oxidized galactomannans of fenugreek, sesbania and guar gums. Carbohydr Polym. 2019;207:510–20. https://doi.org/10.1016/j.carbpol.2018.11.100.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Liu Y, Lei F, He L, Xu W, Jiang J. Comparative study on the monosaccharides of three typical galactomannans hydrolyzed by different methods. Ind Crop Prod. 2020a;157:112895. https://doi.org/10.1016/j.indcrop.2020.112895.

    CAS  Article  Google Scholar 

  29. 29.

    Liu Y, Lei F, He L, Xu W, Jiang J. Physicochemical characterization of galactomannans extracted from seeds of Gleditsiasinensis lam and fenugreek. Comparison with commercial guar gum. Int J Biol Macromol. 2020b;158:1047–54. https://doi.org/10.1016/j.ijbiomac.2020.04.208.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Loser U, Iturriaga L, Ribotta PD, Barrera GN. Combined systems of starch and Gleditsia triacanthos galactomannans: thermal and gelling properties. Food Hydrocoll. 2021;116:106378.

    Article  Google Scholar 

  31. 31.

    Coelho GO, Batista MJA, Avila AF, Franca AS, Oliveira LS. Development and characterization of biopolymeric films of galactomannans recovered from spent coffee grounds. J Food Eng. 2021;289:110083. https://doi.org/10.1016/j.jfoodeng.2020.110083.

    CAS  Article  Google Scholar 

  32. 32.

    Gonzalez A, Barrera GN, Galimberti PI, Ribotta PD, Igarzabal CIA. Development of edible films prepared by soy protein and the galactomannan fraction extracted from Gleditsia triacanthos (Fabaceae) seed. Food Hydrocoll. 2019;97:105227. https://doi.org/10.1016/j.foodhyd.2019.105227.

    CAS  Article  Google Scholar 

  33. 33.

    Zhao N, Chai Y, Wang T, Wang K, Jiang J, Yang H-Y. Preparation and physical/chemical modification of galactomannan film for food packaging. Int J Biol Macromol. 2019;137:1060–7. https://doi.org/10.1016/j.ijbiomac.2019.07.048.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Tao Y, Huang C, Lai C, Huang C, Yong Q. Biomimetic galactomannan/bentonite/graphene oxide film with superior mechanical and fire retardant properties by borate cross-linking. Carbohydr Polym. 2020;245:116508. https://doi.org/10.1016/j.carbpol.2020.116508.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Chouaibi M, Rezig L, Lakoud A, Boussaid A, Hassouna M, Ferrari G, et al. Exploring potential new galactomannan source of Retamareatam seeds for food, cosmetic and pharmaceuticals: characterization and physical, emulsifying and antidiabetic properties. Int J Biol Macromol. 2019;124:1167–76. https://doi.org/10.1016/j.ijbiomac.2018.12.007.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Stringa P, Toledano V, Papa-Gobbi R, Arreola M, Largo C, Machuca M, et al. Galactomannan as a potential modulator of intestinal ischemia-reperfusion injury. J Surg Res. 2020;249:232–40. https://doi.org/10.1016/j.jss.2019.10.027.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Sun M, Sun Y, Li Y, Liu Y, Liang J, Zhang Z. Physical properties and antidiabetic potential of a novel galactomannan from seeds of Gleditsia japonica var. delavayi. J Funct Foods. 2018;46:546–55. https://doi.org/10.1016/j.jff.2018.05.027.

    CAS  Article  Google Scholar 

  38. 38.

    Gu J, Pei W, Tang S, Yan F, Peng Z, Huang C, et al. Procuring biologically active galactomannans from spent coffee ground (SCG) by autohydrolysis and enzymatic hydrolysis. Int J Biol Macromol. 2020;149:572–80. https://doi.org/10.1016/j.ijbiomac.2020.01.281.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Tel-Cayan G, Muhammad A, Deveci E, Duru ME, Ozturk M. Isolation, structural characterization, and biological activities of galactomannans from Rhizopogonluteolus and Ganoderma adspersum mushrooms. Int J Biol Macromol. 2020;165(Part B):2395–403.

    CAS  Article  Google Scholar 

  40. 40.

    Zhou M, Yang L, Yang S, Zhao F, Xu L, Yong Q. Isolation, characterization and in vitro anticancer activity of an aqueous galactomannan from the seed of Sesbania cannabina. Int J Biol Macromol. 2018;113:1241–7. https://doi.org/10.1016/j.ijbiomac.2018.03.067.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Muschin T, Budragchaa D, Kanamoto T, Nakashima H, Ichiyama K, Yamamoto N, et al. Chemically sulfated natural galactomannans with specific antiviral and anticoagulant activities. Int J Biol Macromol. 2016;89:415–20. https://doi.org/10.1016/j.ijbiomac.2016.05.005.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Valenga F, Petri DFS, Lucyszyn N, Jo TA, Sierakowski MR. Galactomannan thin films as supports for the immobilization of Concanavalin a and/or dengue viruses. Int J Biol Macromol. 2012;50(1):88–94. https://doi.org/10.1016/j.ijbiomac.2011.10.005.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Marques FDC, Pantoja PDS, Matos VEA, Silva RO, Damasceno SRBD, Franco AX, et al. Galactomannan from the seeds of Caesalpiniapulcherrima prevents indomethacin-induced gastrointestinal damage via neutrophil migration. Int J Biol Macromol. 2019;141:68–75. https://doi.org/10.1016/j.ijbiomac.2019.08.193.

    CAS  Article  Google Scholar 

  44. 44.

    Jesus M, Martins APJ, Gallardo E, Silvestre S. Diosgenin: Recent highlights on pharmacology and analytical methodology. J Anal Methods Chem. 2016;4156293:16.

    Google Scholar 

  45. 45.

    Ebrahimibasabi E, Ebrahimi A, Momeni M, Amerian MR. Elevated expression of diosgenin-related genes and stimulation of the defense system in Trigonellafoenum-graecum (fenugreek) by cold plasma treatment. Sci Hortic. 2020;271:109494. https://doi.org/10.1016/j.scienta.2020.109494.

    CAS  Article  Google Scholar 

  46. 46.

    Shen B, Yu X, Zhang F, Jiang W, Yuan H, Pan Z, et al. Green production of diosgenin from alcoholysis of dioscoreazingiberensis C. H wright by a magnetic solid acid. J Clean Prod. 2020;271:122297.

    CAS  Article  Google Scholar 

  47. 47.

    Jung D-H, Park H-J, Byun H-E, Park Y-M, Ki T-W, Kim B-O, et al. Diosgenin inhibits macrophage-derived inflammatory mediators through down-regulation of CK2, JNK, NF-κB and AP-1 activation. Int Immunopharmacol. 2010;10(9):1047–54. https://doi.org/10.1016/j.intimp.2010.06.004.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Lepage C, Leger DY, Bertrand J, Martin F, Beneytout JL, Liagre B. Diosgenin induces death receptor-5 through activation of p38 pathway and promotes TRAIL-induced apoptosis in colon cancer cells. Cancer Lett. 2011;301(2):193–202. https://doi.org/10.1016/j.canlet.2010.12.003.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Lopez EP-F, Qin-tong W, Wei W, Jornet PL. Potential chemotherapeutic effects of diosgenin, zoledronic acid and epigallocatechin-3-gallate on PE/CA-PJ15 oral squamous cancer cell line. Arch Oral Biol. 2017;82:141–6. https://doi.org/10.1016/j.archoralbio.2017.05.023.

    CAS  Article  Google Scholar 

  50. 50.

    Khosravi Z, Sedaghat R, Baluchnejadmojarad T, Roghani M. Diosgenin ameliorates testicular damage in streptozotocin-diabetic rats through attenuation of apoptosis, oxidative stress, and inflammation. Int Immunopharmacol. 2019;70:37–46. https://doi.org/10.1016/j.intimp.2019.01.047.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Zhang Z, Wang H, Chen T, Zhang H, Liang J, Kong W, et al. Synthesis and structure characterization of sulfated galactomannan from fenugreek gum. Int J Biol Macromol. 2019;125:1184–91. https://doi.org/10.1016/j.ijbiomac.2018.09.113.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Biswas D, Nazir R, Biswas P, Kumar V, Nandy S, Mukherjee A, et al. Endophytic sources of diosgenin, a natural steroid with multiple therapeutic values. S Afr J Bot. 2020;134:119–25. https://doi.org/10.1016/j.sajb.2020.04.009.

    CAS  Article  Google Scholar 

  53. 53.

    Wei M, Bai Y, Ao M, Jin W, Yu P, Zhu M, et al. Novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscoreazingiberensis C.H. Wright (DZW). Bioresour Technol. 2013;146:549–55. https://doi.org/10.1016/j.biortech.2013.07.090.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Yu C, Li Z, Yin H, Xia G, Shen Y, Yang H, et al. Green production of diosgenin from Discoreanipponica Makino tubers based on pressurized biphase acid hydrolysis via response surface methodology optimization. Green Chem Lett Rev. 2019;12(1):79–88. https://doi.org/10.1080/17518253.2019.1579370.

    CAS  Article  Google Scholar 

  55. 55.

    Zhang C, Wang Y, Yang Z, Xu M. Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Dioscorea zingiberensis. Fuel. 2006;85(14–15):2034–40. https://doi.org/10.1016/j.fuel.2006.04.009.

    CAS  Article  Google Scholar 

  56. 56.

    Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, et al. Diosgenin, a steroidal saponin, and its analogs: effective therapies against different chronic diseases. Life Sci. 2020;260:118182. https://doi.org/10.1016/j.lfs.2020.118182.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Sangeetha MK, Mal NSS, Atmaja K, Sali VK, Vasanthi HR. PPARs and Diosgenin a chemico biological insight in NIDDM. Chem Biol Interact. 2013;206(2):403–10. https://doi.org/10.1016/j.cbi.2013.08.014.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Mu S, Tian X, Ruan Y, Liu Y, Bian D, Ma C, et al. Diosgenin induces apoptosis in IGF-1-stimulated human thyrocytes through two caspase-dependent pathways. Biochem Biophys Res Commun. 2012;418(2):347–52. https://doi.org/10.1016/j.bbrc.2012.01.024.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Liu K, Zhao W, Gao X, Huang F, Kou J, Liu B. Diosgenin ameliorates palmitate-induced endothelial dysfunction and insulin resistance via blocking IKKβ and IRS-1 pathways. Atherosclerosis. 2012;223(2):350–8. https://doi.org/10.1016/j.atherosclerosis.2012.06.012.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Wang W-C, Liu S-F, Chang W-T, Shiue Y-L, Hsieh P-F, Hung T-J, et al. The effects of diosgenin in the regulation of renal proximal tubular fibrosis. Exp Cell Res. 2014;232(2):255–62.

    Article  Google Scholar 

  61. 61.

    Ahmed LA, Obaid AZ, Zaki HF, Agha AM. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats. Eur J Pharmacol. 2014;740:379–87. https://doi.org/10.1016/j.ejphar.2014.07.026.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Tikhonova MA, Yu C-H, Kolosova NG, Gerlinskaya LA, Maslennikova SO, Yudina AV, et al. Comparison of behavioral and biochemical deficits in rats with hereditary defined or D-galactose-induced accelerated senescence: evaluating the protective effects of diosgenin. Pharmacol Biochem Behav. 2014;120:7–16. https://doi.org/10.1016/j.pbb.2014.01.012.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Kiasalari Z, Rahmani T, Mahmoudi N, Baluchnejadmojarad T, Roghani M. Diosgenin ameliorates development of neuropathic pain in diabetic rats: involvement of oxidative stress and inflammation. Biomed Pharmacother. 2017;86:654–61. https://doi.org/10.1016/j.biopha.2016.12.068.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Zolfaghari F, Rashidi-Monfared S, Moieni A, Abedini D, Ebrahimi A. Improving diosgenin production and its biosynthesis in Trigonella foenum-graecumL. hairy root cultures. Ind Crops Prod. 2020;145:112075.

    CAS  Article  Google Scholar 

  65. 65.

    Lee J, Jung K, Kim YS, Park D. Diosgenin inhibits melanogenesis through the activation of phosphatidylinositol-3-kinase pathway (PI3K) signaling. Life Sci. 2007;81(3):249–54. https://doi.org/10.1016/j.lfs.2007.05.009.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Pari L, Monisha P, Jalaludeen AM. Beneficial role of diosgenin on oxidative stress in aorta of streptozotocin induced diabetic rats. Eur J Pharmacol. 2012;691(1–3):143–50. https://doi.org/10.1016/j.ejphar.2012.06.038.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Kalailingam P, Kannaian B, Tamilmani E, Kaliaperumal R. Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine. 2014;21(10):1154–61. https://doi.org/10.1016/j.phymed.2014.04.005.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Sato K, Fujita S, Lemitsu M. Acute administration of diosgenin or dioscorea improves hyperglycemia with increases muscular steroidogenesis in STZ-induced type 1 diabetic rats. J Steroid Biochem Mol Biol. 2014;143:152–9. https://doi.org/10.1016/j.jsbmb.2014.02.020.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Kanchan DM, Somani GS, Peshattiwar VV, Kaikini AA, Sathaye S. Renoprotective effect of diosgenin in streptozotocin induced diabetic rats. Pharmacol Rep. 2016;68(2):370–7. https://doi.org/10.1016/j.pharep.2015.10.011.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Gan Q, Wang J, Hu J, Lou G, Xiong H, Peng C, et al. The role of diosgenin in diabetes and diabetic complications. J Steroid Biochem Mol Biol. 2020;198:105575. https://doi.org/10.1016/j.jsbmb.2019.105575.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Londzin P, Kisiel-Nawrot E, Kocik S, Janas A, Trawczynski M, Cegiela U, et al. Effects of diosgenin on the skeletal system in rats with experimental type 1 diabetes. Biomed Pharmacother. 2020;129:110342. https://doi.org/10.1016/j.biopha.2020.110342.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Singh M, Hamid AA, Maurya AK, Prakash O, Khan F, Kumar A, et al. Synthesis of diosgenin analogues as potential anti-inflammatory agents. J Steroid Biochem Mol Biol. 2014;143:323–33. https://doi.org/10.1016/j.jsbmb.2014.04.006.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Chen Y, Xu X, Zhang Y, Liu K, Huang F, Liu B, et al. Diosgenin regulates adipokine expression in perivascular adipose tissue and ameliorates endothelial dysfunction via regulation of AMPK. J Steroid Biochem Mol Biol. 2016;155(Part A):155–65.

    CAS  Article  Google Scholar 

  74. 74.

    Binesh A, Devaraj SN, Halagowder D. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent. Life Sci. 2018;196:28–37. https://doi.org/10.1016/j.lfs.2018.01.012.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Kwon C-S, Sohn HY, Kim SH, Kim JH, Son KH, Lee JS, et al. Anti-obesity effect of Dioscoreanipponica Makino with lipase-inhibitory activity in rodents. Biosci Biotechnol Biochem. 2003;67(7):1451–6. https://doi.org/10.1271/bbb.67.1451.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Manivannan J, Shanthakumar J, Rajeshwaran K, Arunagiri P, Balamurugan E. Effect of diosgenin on cardiac tissue lipids, trace elements, molecular changes, TNF-α and IL-6 expression in CRF rats. Biomedi Prevent Nutr. 2013;3(4):389–92. https://doi.org/10.1016/j.bionut.2013.08.005.

    Article  Google Scholar 

  77. 77.

    Manivannan J, Shanthakumar J, Arunagiri P, Raja B, Balamurugan E. Diosgenin interferes coronary vasoconstriction and inhibits osteochondrogenic transdifferentiation of aortic VSMC in CRF rats. Biochimie. 2014;102:183–7. https://doi.org/10.1016/j.biochi.2014.03.011.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Romero-Hernandez L, Merino-Montiel P, Montiel-Smith S, Meza-Reyes S, Vega-Baez JL, Abasolo I, et al. Diosgenin-based thio (seleno) ureas and triazolyl glycoconjugates as hybrid drugs. Antioxidant and Antiproliferative profile. Eur J Med Chem. 2015;99:67–81. https://doi.org/10.1016/j.ejmech.2015.05.018.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Martinez-Gallegos AA, Guerrero-Luna G, Orti-Gonzalez A, Cardenas-Garcia M, Bernes S, Hernandez-Linares MG. Azasteroids from diosgenin: synthesis and evaluation of their antiproliferative activity. Steroids. 2020;166:108777. https://doi.org/10.1016/j.steroids.2020.108777.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Wu S, Zhao M, Sun Y, Xie M, Le K, Xu M, et al. The potential of diosgenin in treating psoriasis: studies from HaCaT keratinocytes and imiquimod-induced murine model. Life Sci. 2020;241:117115. https://doi.org/10.1016/j.lfs.2019.117115.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Raju J, Bird RP. Diosgenin, a naturally occurring furostanol saponin suppresses 3-hydroxy-3-methylglutaryl CoA reductase expression and induces apoptosis in HCT-116 human colon carcinoma cells. Cancer Lett. 2007;255(2):194–204. https://doi.org/10.1016/j.canlet.2007.04.011.

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Li F, Fernandez PP, Rajendran P, Hui KM, Sethi G. Diosgenin, a steroidal saponin, inhibits STAT2 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett. 2010;292(2):197–207. https://doi.org/10.1016/j.canlet.2009.12.003.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    He Z, Chen H, Li G, Zhu H, Gao Y, Zhang L, et al. Diosgenin inhibits the migration of human breast cancer MDA-MB-231 cells by suppressing Vav2 activity. Phytomedicine. 2014;21(6):871–6. https://doi.org/10.1016/j.phymed.2014.02.002.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Guo W, Chen Y, Gao J, Zhong K, Wei H, Li K, et al. Diosgenin exhibits tumor suppressive function via down-regulation of EZH2 in pancreatic cancer cells. Cell Cycle. 2019;18(15):1745–58. https://doi.org/10.1080/15384101.2019.1632624.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Erdagi SI, Ngwabebhoh FA, Yildiz U. Pickering stabilized nanocellulose-alginate: a diosgenin-mediated delivery of quinalizarin as a potent cyto-inhibitor in human lung/breast cancer cell lines. Mater Sci Eng C. 2020;109:110621. https://doi.org/10.1016/j.msec.2019.110621.

    CAS  Article  Google Scholar 

  86. 86.

    Hernandez-Vazquez JMV, Lopez-Munoz H, Escobar-Sanchez ML, Flores-Guzman F, Weiss-Steider B, Hiario-Martinez JC, et al. Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. Eur J Pharmacol. 2020;871:172942. https://doi.org/10.1016/j.ejphar.2020.172942.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Michalak O, Krzeczynski P, Cieslak M, Cmoch P, Cybulski M, Krolewska-Golinska K, et al. Synthesis and anti-tumour, immunomodulating activity of diosgenin and tigogenin conjugates. J Steroid Biochem Mol Biol. 2020;198:105573. https://doi.org/10.1016/j.jsbmb.2019.105573.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Zhang J, Wang X, Yang J, Guo L, Wang X, Song B, et al. Novel diosgenin derivatives containing 1,3,4-oxadiazole/thiadiazole moieties as potential antitumor agents: design, synthesis and cytotoxic evaluation. Eur J Med Chem. 2020;186:111897. https://doi.org/10.1016/j.ejmech.2019.111897.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Mohamadi-Zarch S-M, Baluchnejadmojarad T, Nourabadi D, Khanizadeh AM, Roghani M. Protective effect of diosgenin on LPS/D-gal-induced acute liver failure in C57BL/6 mice. Microb Pathog. 2020;146:104243. https://doi.org/10.1016/j.micpath.2020.104243.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Sirotkin AV, Alexa R, Alwasel S, Harrath AH. The phytoestrogen, diosgenin, directly stimulates ovarian cell functions in two farm animal species. Domest Anim Endocrinol. 2019;69:35–41. https://doi.org/10.1016/j.domaniend.2019.04.002.

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Liu W, Zhu M, Yu Z, Yin D, Lu F, Pu Y, et al. Therapeutic effects of diosgenin in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2017;313:152–60. https://doi.org/10.1016/j.jneuroim.2017.10.018.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Tada Y, Kanda N, Haratake A, Tobiishi M, Uchiwa H, Watanabe S. Novel effects of diosgenin on skin aging. Steroids. 2020;74(6):504–11.

    Article  Google Scholar 

  93. 93.

    Erdagi SI, Ngwabebhoh FA, Yildiz U. Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications. Int J Biol Macromol. 2020;149:651–63. https://doi.org/10.1016/j.ijbiomac.2020.01.279.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Not applicable.

Author information

Affiliations

Authors

Contributions

All author(s) contributed equally to literature research, writing manuscript, etc. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Mohamad Hesam Shahrajabian.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors consent for the publication of this review.

Competing interests

The authors declare that they have no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahrajabian, M.H., Sun, W., Marmitt, D.J. et al. Diosgenin and galactomannans, natural products in the pharmaceutical sciences. Clin Phytosci 7, 50 (2021). https://doi.org/10.1186/s40816-021-00288-y

Download citation

Keywords

  • Health benefits
  • Diosgenin
  • Galactomannans
  • Natural products