Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The Architecture of SARS-CoV-2 transcriptome. Cell. 2020;181(4):914–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nat. 2020;579(7798):270–3.
Article
CAS
Google Scholar
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 Spike glycoprotein. Cell. 2020;180:1–12.
CAS
Google Scholar
Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiemer L, Lund O, Brunak S, Blom N. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology. BMC Bioinformatics. 2004;5(1):72.
Article
PubMed
PubMed Central
Google Scholar
Ratia K, Saikatendu KS, Santarsiero BD, Barreto N, Baker SC, Stevens RC, et al. Severe acute respiratory syndrome coronavirus papain-like-protease: Structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A. 2006;103(15):5717–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freitas BT, Durie IA, Murray J, Longo JE, Miller HC, Crich D, et al. Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis. 2020;6(8):2099–109.
Article
CAS
PubMed
Google Scholar
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. In Cell Research. 2020. https://doi.org/10.1038/s41422-020-0282-0.
Article
PubMed
Google Scholar
Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017;9(396):eaal3653. https://doi.org/10.1126/scitranslmed.aal3653.
Adeoye AO, Oso BJ, Olaoye IF, Tijjani H, Adebayo AI. Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus. J Biomol Struct Dyn. 2021;39(10):3469–79. https://doi.org/10.1080/07391102.2020.1765876.
Article
CAS
PubMed
Google Scholar
Ishola AA, Adewole KE, Tijjani H, Abdulai SI, Asogwa NT. Phylogenic analysis of coronavirus genome and molecular studies on potential anti-COVID-19 agents from selected FDA-approved drugs. J Biomol Struct Dyn. 2021;22:1–18. https://doi.org/10.1080/07391102.2021.1902392.
Article
CAS
Google Scholar
Ishola AA, Joshi T, Abdulai SI, Tijjani H, Pundir H, Chandra S. Molecular basis for the repurposing of histamine H2-receptor antagonist to treat COVID-19. J Biomol Struct Dyn. 2022;40(13):5785–802. https://doi.org/10.1080/07391102.2021.1873191.
Article
CAS
PubMed
Google Scholar
Tijjani H, Matinja AI, Olatunde A, Zangoma MH, Mohammed A, Akram M, Adeoye AO, Lawal H. In silico insight into the inhibitory effects of active antidiabetic compounds from medicinal plants against SARS-CoV-2 replication and posttranslational modification. Coronaviruses. 2021;10:1–10.
Google Scholar
Tijjani H, Olatunde A, Adeoye AO, Egbuna C, Akram M, Mohammed A, Matinja AI, Zangoma MH. In silico investigation and identification of bioactive compounds from medicinal plants as potential inhibitors against SARS-CoV-2 cellular entry. Coronavirus Drug Discovery, Elsevier. 2022;III:355–76. https://doi.org/10.1016/B978-0-323-95578-2.00006-6.
Article
Google Scholar
Dias DA, Urban S, Roessner U. A Historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galeotti F, Barile E, Curir P, Dolci M, Lanzotti V. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett. 2008;1(1):44–8.
Article
CAS
Google Scholar
Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc. 2010;69(3):273–8.
Article
CAS
PubMed
Google Scholar
Gaudry A, Bos S, Viranaicken W, Roche M, Krejbich-Trotot P, Gadea G, et al. The flavonoid isoquercitrin precludes initiation of Zika virus infection in human cells. Int J Mol Sci. 2018;19(4):1093.
Article
PubMed Central
CAS
Google Scholar
Zheng Y, Jiang X, Gao F, Song J, Sun J, Wang L, et al. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complement Altern Med. 2014;14(1):400.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salari S, Bahabadi SE, Samzadeh-Kermani A, Yosefzaei F. In-vitro evaluation of antioxidant and antibacterial potential of green synthesized silver nanoparticles using prosopis farcta fruit extract. Iran J Pharm Res. 2019;18(1):430.
CAS
PubMed
PubMed Central
Google Scholar
Traboulsi H, Cloutier A, Boyapelly K, Bonin MA, Marsault É, Cantin AM, et al. The flavonoid isoliquiritigenin reduces lung inflammation and mouse morbidity during influenza virus infection. Antimicrob Agents Chemother. 2015;59(10):6317–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad A, Kaleem M, Ahmed Z, Shafiq H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—a review. Food Res Int. 2015;77:221–35.
Article
CAS
Google Scholar
Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral activities of flavonoids. Biomed pharmacother. 2021;140:111596. https://doi.org/10.1016/j.biopha.2021.111596.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patridge E, Gareiss P, Kinch MS, Hoyer D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today. 2016;21:204–7. https://doi.org/10.1016/j.drudis.2015.01.009.
Article
CAS
PubMed
Google Scholar
Rakshit G, Dagur P, Satpathy S, Patra A, Jain A, Ghosh M. Flavonoids as potential therapeutics against novel coronavirus disease-2019 (nCOVID-19). J Biomol Struct Dyn. 2021;8:1–13. https://doi.org/10.1080/07391102.2021.1892529.
Article
CAS
Google Scholar
Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS ONE. 2020;15: e0240653.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teli DM, Shah MB, Chhabria MT. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Front Mol Biosci. 2021;7: 599079.
Article
PubMed
PubMed Central
CAS
Google Scholar
Akhter S, Batool AI, Selamoglu Z, Sevindik M, Eman R, Mustaqeem M, Aslam M. Effectiveness of Natural Antioxidants against SARS-CoV-2? Insights from the In-Silico World. Antibiotics. 2021;10:1011. https://doi.org/10.3390/antibiotics10081011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bharadwaj S, Dubey A, Yadava U, Mishra SK, Kang SG, Dwivedi VD. Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Brief Bioinform. 2021;22:1361–77.
Article
CAS
PubMed
Google Scholar
Wu Q, Yu C, Yan Y, Chen J, Zhang C, Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia. 2010;81:429–33.
Article
CAS
PubMed
Google Scholar
Kai H, Obuchi M, Yoshida H, Watanabe W, Tsutsumi S, Park YK, Matsuno K, Yasukawa K, Kurokawa M. In vitro and in vivo anti-Influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08). J Funct Foods. 2014;8:214–23.
Article
CAS
Google Scholar
Ibrahim AK, Youssef AI, Arafa AS, Ahmed SA. Anti-H5N1 virus flavonoids from Capparis sinaica Veill. Nat Prod Res. 2013;27:2149–53.
Article
CAS
PubMed
Google Scholar
Sithisam P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and bicalein in H5N1 Influenza A virus-infected cells. Antiviral Res. 2013;97:41–8.
Article
CAS
Google Scholar
Liu A-L, Wang HD, Lee SMY, Wang YT, Du GH. Structure-activity relationship of flavonoids as Influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem. 2008;16:7141–7.
Article
CAS
PubMed
Google Scholar
Ortega JT, Serrano ML, Suárez AI, Baptista J, Pujol FH, Cavallaro LV, Campos HR, Rangel HR. Antiviral activity of flavonoids present in aerial parts of Marcetia taxifolia against Hepatitis B virus, Poliovirus, and Herpes simplex virus in vitro. EXCLI J. 2019;18:1037–48.
PubMed
PubMed Central
Google Scholar
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An Open chemical toolbox. J Cheminform. 2011;3(1):33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trott O, Olson AJ. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J Comput Chem. 2010;31(2):455–61.
CAS
PubMed
PubMed Central
Google Scholar
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
Article
PubMed
PubMed Central
Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.
Article
CAS
Google Scholar
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30(10):1545–614.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2016;12(1):405–13.
Article
CAS
PubMed
Google Scholar
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14(1):33–8.
Article
CAS
PubMed
Google Scholar
Tubiana T, Carvaillo JC, Boulard Y, Bressanelli S. TTClust: A Versatile Molecular Simulation Trajectory Clustering Program with Graphical Summaries. J Chem Inf Model. 2018;58(11):2178–82.
Article
CAS
PubMed
Google Scholar
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002;40(1):82–92.
Google Scholar
Li Q, Peng W, Ou Y. Prediction and analysis of key protein structures of 2019-nCoV. Future Virol. 2020;15(6):349–57.
Article
CAS
Google Scholar
Yuan L, Chen Z, Song S, Wang S, Tian C, Xing G, et al. P53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. J Biol Chem. 2015;290(5):3172–82.
Article
CAS
PubMed
Google Scholar
Li SW, Wang CY, Jou YJ, Huang SH, Hsiao LH, Wan L, et al. SARS coronavirus papain-like protease inhibits the TLR7 signaling pathway through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. Int J Mol Sci. 2016;17(5):678.
Article
PubMed Central
CAS
Google Scholar
Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell. 2014;5(5):369–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 2005;3(10): e324.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chou CY, Lai HY, Chen HY, Cheng SC, Cheng KW, Chou YW. Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease. Acta Crystallogr Sect D Biol Crystallogr. 2014;70(2):572–81.
Article
CAS
Google Scholar
Mielech AM, Deng X, Chen Y, Kindler E, Wheeler DL, Mesecar AD, et al. Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis. J Virol. 2015;89(9):4907–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daczkowski CM, Dzimianski JV, Clasman JR, Goodwin O, Mesecar AD, Pegan SD. Structural Insights into the Interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species. J Mol Biol. 2017;429(11):1661–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science (80- ). 2020;368(6489):409–12.
Lin JH, Yamazaki M. Role of P-Glycoprotein in Pharmacokinetics. Clin Pharmacokinet. 2003;42(1):59–98.
Article
CAS
PubMed
Google Scholar
Zanin L, Saraceno G, Panciani PP, Renisi G, Signorini L, Migliorati K, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir (Wien). 2020;162(7):1491–4. https://doi.org/10.1007/s00701-020-04374-x.
Article
PubMed
PubMed Central
Google Scholar
Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res. 2008;57(3):181–95.
Article
CAS
PubMed
Google Scholar
Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature. 2006;440(7083):463–9.
Article
CAS
PubMed
Google Scholar
Kratz JM, Grienke U, Scheel O, Mann SA, Rollinger JM. Natural products modulating the hERG channel: Heartaches and hope. Nat Prod Rep. 2017;34(8):957–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatterjee S, Maity A, Chowdhury S, Islam MdA, Muttinini RK, Sen D. In silico analysis and identification of promising hits against 2019 novel coronavirus 3C-like main protease enzyme. J Biomol Struct Dyn. 2020;14:5290–303. https://doi.org/10.1080/07391102.2020.1787228.
Article
CAS
Google Scholar
Kufareva I, Abagyan R. Methods of protein structure comparison. Methods Mol Biol (Clifton NJ). 2012;857:231–57.
Article
CAS
Google Scholar