Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halliwell B, Gutteridge J. Cellular response to oxidative stress: adaptation, damage, repair, senescence and death. In: Free radical in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007. p. 187–267.
Google Scholar
Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambeguokar SS, Chen P, Kajed R, Glabe CG, Frautschy SA, Cole GM. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280(7):5892–901.
Article
CAS
PubMed
Google Scholar
Ye J, Zhang Y. Curcumin protects against intracellular amyloid toxicity in rat primary neurons. Int J Clin Exp Med. 2012;5(1):44–9.
CAS
PubMed
PubMed Central
Google Scholar
Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother. 2016;16(6):671–80.
Article
CAS
PubMed
Google Scholar
Shi C, Liu J, Wu F, Yew DT. Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int J Mol Sci. 2010;11(1):107–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biswas K, Kumar A, Babaria BA, Prabhu K, Setty SR. Hepatoprotective effect of leaves of Peltophorum pterocarpum against paracetamol Induced acute liver damage in rats. J Basic Clin Pharm. 2009;1(1):10–5.
PubMed
Google Scholar
Sridharamurthy NB, Ashok B, Yogananda R. Evaluation of Antioxidant and Acetyl Cholinesterase inhibitory activity of Peltophorum pterocarpum in Scopolamine treated rats. Int J Drug Dev Res. 2012;4(3):115–27.
Google Scholar
Manaharan T, Teng LL, Appleton D, Ming CH, Masilamani T, Palanisamy UD. Antioxidant and antiglycemic potential of Peltophorum pterocarpum plant parts. Food Chem. 2011;129(4):1355–61.
Article
CAS
Google Scholar
Borutaite V, Brown GC. Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 2001;500(3):114–8.
Article
CAS
PubMed
Google Scholar
Polster BM, Fiskum G. Mitochondrial mechanisms of neural cell apoptosis. J Neurochem. 2004;90(6):1281–9.
Article
CAS
PubMed
Google Scholar
Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12:1–13.
Article
CAS
PubMed
Google Scholar
Strauss WL, Kemper RR, Jayakar P, Kong CF, Hersh LB, Hilt DC, Rabin M. Human choline acetyltransferase gene maps to region 10q11-q22.2 by in situ hybridization. Genomics. 1991;9(2):396–8.
Article
CAS
PubMed
Google Scholar
Resende RR, Adhikari AA. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal. 2009;7:20.
Article
PubMed
PubMed Central
Google Scholar
Jash SK, Singh RK, Majhi S, Sarkar A, Gorai D. Peltophorum pterocarpum: chemical and pharmacological aspects. Int J Pharm Sci Res. 2014;5(1):26–36.
Google Scholar
Whittermore ER, Loo DT, Watt JA, Cotman CW. Peroxide-induced cell death in primary neuronal culture. Neuroscience. 1995;67(4):921–32.
Article
Google Scholar
Gulden M, Jess A, Kammann J, Maser E& Seibert H. Cytotoxic potency of H2O2 in cell cultures: Impact of cell concentration and exposure time. Free Radic Biol Med. 2010;49(8):1298–305.
Article
PubMed
Google Scholar
Vermes I, Haanen C, Nakken HS, Reutelingserger C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184(95):39–51.
Article
CAS
PubMed
Google Scholar
Shaykhalishahi H, Yazdanparast R, Ha HH, Chang YT. Inhibition of H2O2-induced neuroblastoma cell cytotoxicity by a triazine derivative, AA3E2. Eur J Pharmacol. 2009;622(1-3):1–6.
Article
CAS
PubMed
Google Scholar
Wang XY, He PY, Du J, Zhang JZ. Quercetin in combating H2O2 induced early cell apoptosis and mitochondrial damage to normal human keratinocytes. Chin Med J. 2010;123(5):532–6.
CAS
PubMed
Google Scholar
Jiang B, Liu JH, Bao Y, An LJ. Hydrogen peroxide-induced apoptosis in PC12 cells and the protective effect of puerarin. Cell Biol Int. 2003;27(12):1025–31.
Article
CAS
PubMed
Google Scholar
Sanchana M, Flaskas J, Hargreaves AJ. In vitro biomarkers of developmental neurotoxicity. In: Gupta RC, editors. Reproductive and Developmental Toxicology. 1st ed. Elsevier; 2011: Chapter 19, 227–252.
Sattayasai J, Chaonapan P, Arkaravichie T, Saimpornkul R, Junnu S, Charoensilp P, Samar J, Jantaravinid J, Masaratara P, Suktitipat B, Manissorn J, Thongboonkerd V, Neungtom N, Moongkarndi P. Protective effects of mangosteen extract on H2O2-induced cytotoxicity in SK-N-SH cells and scopolamine-induced memory impairment in mice. PLoS One. 2013;8(12), e85053: 1–13.
Son YO, Jang YS, Heo JS, Chang WT, Choi KC Lee JC. Apoptosis inducing factor plays a critical role in caspase independent, pyknotic cell death in hydrogen peroxide exposed cells. Apoptosis. 2009;14:796–808.
Hampton MB, Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: Implications for apoptosis. FEBS Lett. 1997;414(3):552–6.
Article
CAS
PubMed
Google Scholar
Kim DK, Cho ES, Um HD. Caspase-dependent and -independent events in apoptosis induced by hydrogen peroxide. Exp Cell Res. 2000;257(1):82–8.
Article
CAS
PubMed
Google Scholar
Ly JD, Grubb D, Lawen A. The mitochondrial membrane potential (DYm) in apoptosis; an update. Apoptosis. 2003;8:115–28.
Article
CAS
PubMed
Google Scholar
Armenta MM, Ruiz CN, Rebollar DJ, Martinez E, Gomex PY. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxidative Med Cell Longev. 2014;2014:1–12.
Article
Google Scholar
Halliwell B, Clement MV, Ramalingam J, Long LH. Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB Life. 2000;50(4-5):251–7.
Article
CAS
PubMed
Google Scholar
Babich H, Liebling EJ, Burger RF, Zuckerbraun HL, Schuck AG. Choice of DMEM, formulated with or without pyruvate, plays an important role in assessing the in vitro cytotoxicity of oxidants and prooxidant nutraceuticals. In Vitro Cell Dev Biol Anim. 2009;45(5-6):226–33.
Article
CAS
PubMed
Google Scholar
Kelts JL, Cali JJ, Duellman SJ, Shultz J. Altered cytotoxicity of ROS-inducing compounds by sodium pyruvate in cell culture medium depends on the location of ROS generation. Spring. 2015;4:269.
Article
Google Scholar
Long LH, Clement MV, Halliwell B. Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem Biophys Res Commun. 2000;273(1):50–3.
Article
CAS
PubMed
Google Scholar
Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys. 2008;476(2):107–12.
Article
CAS
PubMed
Google Scholar
Long LH, Halliwell B. The effects of oxaloacetate on hydrogen peroxide generation from ascorbate and epigallocatechin gallate in cell culture media: Potential for altering cell metabolism. Biochem Biophys Res Commun. 2011;406(1):20–4.
Article
CAS
PubMed
Google Scholar
Chen L, Liu L, Yin J, Luo Y, Huang S. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int J Biochem Cell Biol. 2009;41:1284–95.
Article
CAS
PubMed
Google Scholar
Li Z, Theus MH, Wei L. Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Develop Growth Differ. 2006;48(8):513–23.
Article
CAS
Google Scholar
Sun Y, Liu W, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK / ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct. 2015;9893(February):1–5.
Google Scholar
English JD, Sweatt JD. Activation of p42 Mitogen- activated Protein Kinase in Hippocampal Long Term Potentiation. J Biol Chem. 1996;271(October 4):24329–32.
Article
CAS
PubMed
Google Scholar
Pearson G, Robinson F, Gibson TB, Xu BE, Karandikar M, Berman K, Cobb M. Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocr Rev. 2001;22(2):153–83. doi:10.1210/er.22.2.153.
CAS
PubMed
Google Scholar
Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001;76(1):1–10.
Article
CAS
PubMed
Google Scholar
Marshall C. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80(2):179–85.
Article
CAS
PubMed
Google Scholar
Glotin AL, Calipel A, Brossas JY, Faussat AM, Tréton J, Mascarelli F. Sustained versus transient ERK1/2 signaling underlies the anti- and proapoptotic effects of oxidative stress in human RPE cells. Investig Ophthalmol Vis Sci. 2006;47(10):4614–23.
Article
Google Scholar
Spencer JPE. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr. 2007;2(3):257–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JPE. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr. 2008;3(3-4):115–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr. 2014;9(3):400.
Article
PubMed
PubMed Central
Google Scholar
Takeda K, Ichiijo H. Neuronal p38 MAPK signalling: An emerging regulator of cell fate and function in the nervous system. Genes Cells. 2002;7(11):1099–111.
Article
CAS
PubMed
Google Scholar
Crossthwaite AJ, Hasan S, William R. Hydrogen peroxide-mediated phosphorylation of ERK1/2, AKt/PKB and JNK in cortical neurones: Dependence on Ca2+ and PI3-kinase. J Neurochem. 2002;80(1):24–35.
Article
CAS
PubMed
Google Scholar
Luo Y, DeFranco DB. Opposing roles for ERK1/2 in neuronal oxidative toxicity: Distinct mechanisms of ERK1/2 action at early versus late phases of oxidative stress. J Biol Chem. 2006;281:16436–42.
Article
CAS
PubMed
Google Scholar
Odaka H, Numakawa T, Adachi N, Ooshima Y, Nakajima S, Katanuma Y, Inoue T, Kanugi H. Cabergoline, dopamine D2 receptor agonist, prevents neuronal cell death under oxidative stress via reducing excitotoxicity. PLoS One. 2014;9(6):1–11.
Google Scholar
Kwon SH, Kim JA, Hong SI, Jung YH, Kim HC, Lee SY, Jang CG. Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells. Neurochem Int. 2011;58(4):533–41.
Article
CAS
PubMed
Google Scholar
Hu XL, Niu YX, Zhang Q, Tian X, Gao LY, Guo LP, Meng WH, Zhao QC. Neuroprotective effects of Kukoamine B against hydrogen peroxide-induced apoptosis and potential mechanisms in SH-SY5Y cells. Environ Toxicol Pharmacol. 2015;40(1):230–40.
Article
CAS
PubMed
Google Scholar
Ruffels J, Griffin M, Dickenson JM. Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of ERK1/2 in H2O2-induced cell death. Eur J Pharmacol. 2004;483(2-3):163–73.
Article
CAS
PubMed
Google Scholar