Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685–8. https://doi.org/10.5897/AJB.
Article
CAS
Google Scholar
Idu M, Omogbai EKI, Aghimien GE, Amaechina F, Timothy O, Omonigho SE. Preliminary phytochemistry, antimicrobial properties and acute toxicity of Stachytarphetajamaicensis (L) Vahl. Leaves. Trends Med Res. 2007;2:193–8.
Article
Google Scholar
Farnsworth NR, Akerele RO, Bingel AS, Soejarto DD, Guo Z. Medicinal Plants in Therapy. Bull WHO. 1985;63:965–81.
CAS
PubMed
PubMed Central
Google Scholar
Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303–36 https://doi.org/10.3390/metabo2020303.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO. Traditional Medicine Growing Needs and Potential - WHO Policy Perspectives on Medicines. 2002; May Available on https://apps.who.int/medicinedocs/en/d/Js2293e/
Google Scholar
Okwu DE, Morah FNI. Mineral and nutritive value of Dennettia tripetala fruits. Fruits. 2004;59(6):437–42. https://doi.org/10.1051/fruits:2005006.
Article
CAS
Google Scholar
Timothy CO, Okere CO. Effect of Dennettia tripetela (MMIMI) seed intake on the IOP of normotensive Emmetropic Nigerian Igbos. J Nigr Optometric Assoc. 2008;14(1):14–7. https://doi.org/10.4314/jnoa.v14i1.55583.
Article
Google Scholar
Akabueze KO, Idu M, Erhabor JO, Timothy O. Antimicrobial and phytochemical attributes of Dennettia tripetala f. baker root and bark extracts. J Microbiol Biotech Food Sci. 2016;5(4):297–300.
CAS
Google Scholar
Iseghohi SO. A review of the uses and medicinal properties of Dennettiatripetala (Pepperfruit). Med Sci. 2015;3(4):104–11. https://doi.org/10.3390/medsci3040104.
Article
CAS
Google Scholar
Aderogba MA, Akinkunmi EO, Mabusela WT. Anti-oxidant and antimicrobial activities of flavonoid glycosides from Dennettia tripetala G. baker leaf extract. Niger J Nat Prod Med. 2011;15:49–52.
Google Scholar
Adedayo BC, Oboh G, Akindahunsi AA. Changes in the total phenol content and antioxidant properties of pepper fruit (Dennettiatripetala) with ripening. Afr J Food Sci. 2010;4:403–9.
CAS
Google Scholar
Dike MC. Proximate, phytochemical and nutrient compositions of some fruits, seeds and leaves of some species at Umudike, Nigeria. ARPN J Agric Biosci. 2010;5:7–16.
Google Scholar
Oyemitan IA, Iwalewa EO, Akanmu MA, Olugbade TA. Antinociceptive and anti-inflammatory effects of essential oil of Dennettia tripetala G. baker (Annonaceae) in rodents. Afri J Tradit Complement Altern Med. 2008;5:355–62.
Article
CAS
Google Scholar
Ejechi BO, Nwafor OE, Okoko FJ. Growth inhibition of tomato-rot fungi by phenolic acidsand essential oil extracts of pepper fruit. Food Res Int. 1999;32(6):395–9. https://doi.org/10.1016/S0963-9969(99)00057-5.
Article
Google Scholar
Anaga AO, Asuzu IU. Glucose uptake-enhancing activity of the ethyl acetate extract of Dennettiatripetala in 3T3-L1 adipocytes. J Complement Integr Med. 2011;8(1). https://doi.org/10.2202/1553_3840.1438.
Osuagwu GGE, Eme CF. The phytochemical composition and antimicrobial activity of Dialiumguineensevitexdoniana and Dennettiatripetalaleaves. Asian J Nat Appl Sci. 2013;2(3):69–81.
Google Scholar
Ebana RUB, Asamudo NU, Etok CA, Edet UO, Onyebuisi CS. Phytochemical screening, nutrient analysis and antimicrobial activity of the leaves of Lasiantheraafricana and Dennettiatripetala on clinical isolates. J Advs Biol Biotechnol. 2016;8(4):1–9. https://doi.org/10.9734/JABB/2016/28291.
Article
Google Scholar
Achuba FI. Role of bitter leaf (Vernoniaamygdalina) extract in prevention of renal toxicity induced by crude petroleum contaminated diets in rats. Int J Vet Sci Med. 2018;6(2):172–7 https://doi.org/10.1016/j.ijvsm.2018.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
George BO, Okpoghono J, Osioma E, Aina OO. Changes in oxidative indices in Plasmodium Berghei infected mice treated with aqueous extract of Aframomum Sceptrum. Front Sci. 2012;2(1):6–9. https://doi.org/10.5923/j.fs.20120201.02.
Article
Google Scholar
Sofowora A. Medicinal plants and traditional medicine in Africa. Ibadan: Spectrum Books Ltd; 1993. p. 289–90.
Google Scholar
Trease GE, Evans WC. Pharmacognosy. 11th ed. London: BailliereTindall Ltd; 1989. p. 60–75.
Google Scholar
Harborne JB. Phytochemical Methods. London: Chapman and Hall, Ltd; 1973. p. 49–188.
Google Scholar
Mediesse-Kengne F, Woguia AL, Fogue P, Atogho-Tiedeu B, Simo G, Boudjeko T. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves. J Cost Lif Med. 2014;2(12):962–9. https://doi.org/10.1186/s13104-015-1703-x.
Article
CAS
Google Scholar
Oyedemi SO, Bradley G, Afolayan AJ. In vitro and in vivo antioxidant activities of aqueous extract of Strychonos henningsii Gilg. Afr J Pharm Pharmacol. 2010;4:70–8.
Google Scholar
Amir M, Mujeeb M, Khan A, Ashraf K, Sharma D, Aqil M. Phytochemical analysis and in vitro antioxidant activity of Uncariagambir. Int J Green Pharm. 2012;6(1):67–72. https://doi.org/10.4103/0973-8258.97136.
Article
Google Scholar
Iserhienrhien LO, Okolie PN. Phytochemical screening and in vitro antioxidant properties of methanol and aqueous leaf extracts of Geophila obvallata. AJRB. 2018;3(2):1–11.
Google Scholar
Garcia-Alonso M, de Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC. Evaluation of the antioxidant properties of fruits. Food Chem. 2004;84(1):13–8. https://doi.org/10.1016/S0308-8146(03)00160-2.
Article
CAS
Google Scholar
Animal Research Ethics. A handbook of USP researchers, vol. 2. 1st ed: Research office publisher. Suva: University of South Pacific; 2009. p. 3–4.
World Medical Association. WMA statement on animal use in biomedical research. 2016.
Google Scholar
Ichipi-Ifukor PC, Asagba SO, Nwose C. Potentiating role of palm oil (Elaeisguineensis) and its extracts in cadmium-induced alteration of amino Transferases. Thai J Pharmaceut Sci. 2019;43(1):38–46.
Google Scholar
Gutteridge JMC, Wilkins C. Copper dependent hydroxyl radical damage to ascorbic acid. Formation of a thiobarbiturie acid reactive products. FEBS Lett. 1982;137(2):327–40. https://doi.org/10.1016/0014-5793(82)80377-3.
Article
CAS
PubMed
Google Scholar
Ellman GC. Tissue sulflydryl groups. Arch Biochem Biophys. 1959;82(1):70–7. https://doi.org/10.1016/0003-9861(59)90090-6.
Article
CAS
PubMed
Google Scholar
Cohen HJ, Betcher–Lange Kessler DL, Rajagopalan KV. Hepatic sulphite oxidase congruency in mitochondria of prosthetic groups and activity. J Biol Chem. 1972;247(2):7759–66. https://doi.org/10.1016/S0021-9258(19)44588-2.
Article
CAS
PubMed
Google Scholar
Misra HP, Fridovich I. The role of superoxide ion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5. https://doi.org/10.1016/S0021-9258(19)45228-9.
Article
CAS
PubMed
Google Scholar
Habig WH, Pabst MJ, Jakoby WB. Glutathione-s-transferases: first enzymic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–9. https://doi.org/10.1016/S0021-9258(19)42083-8.
Article
CAS
PubMed
Google Scholar
Khan MR, Rizvi W, Khan RA, Sheen S. Carbon tetrachloride induced nephrotoxicity in rats: protective role of Digera muricata. J Ethnopharmacol. 2008;122:91–9 DOI: https://doi.org/10.1016/j.jep.2008.12.006.
Article
PubMed
CAS
Google Scholar
Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AAK, Vernekar SN. Markers of renal function tests. N Am J Med Sci. 2010;2(4):170–3.
PubMed
PubMed Central
Google Scholar
Ndukwu BC, Ben-Nwadibia BN. Ethnomedicinal aspects of plants used as spices and condiments in Niger Delta area of Nigeria. Ethnonobotanicals Leaflets. 2005;10:10.
Google Scholar
Omage SO, Orhue NEJ, Omage K. Evaluation of the phytochemical content, in vitro antioxidant capacity, and biochemical and histological effects of Dennettia tripetala fruits in healthy rats. Food Sci Nutr. 2019;7(1):65–75. https://doi.org/10.1002/fsn3.792.
Article
CAS
PubMed
Google Scholar
Maxwell A, Seepersaud M, Pingal P, Mootoo DR, Reynolds WF. 3-beta amino spirosolane steroidal alkaloids from Solanum triste. J Nat Prod. 1995;58(4):625–8. https://doi.org/10.1021/np50118a027.
Article
CAS
PubMed
Google Scholar
Soetan KO, Aiyelaagbe OO. The need for bioactivity-safety evaluation and conservation of medicinal plants – a review. J Med Plants Res. 2009;3(5):324–8.
Google Scholar
Onakurhefe P, Achuba FI, George BO. Phytochemical Analysis and Chemical Characterization of Extracts and Blended Mixture of Palm Oil Leaf. Trop J Nat Prod Res. 2019;3(9):282–97. https://doi.org/10.26538/tjnpr/v3i9.2.
Article
CAS
Google Scholar
Moukette BM, Pieme CA, Njimou JR, Nya Biapa CP, Marco B, Ngogang JY. In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biol Res. 2015;48(1):15. https://doi.org/10.1186/s40659-015-0003-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar M, Gupta V, Kumari P, Reddy C, Jha B. Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J Food Comp Anal. 2011;24(2):270–8. https://doi.org/10.1016/j.jfca.2010.07.007.
Article
CAS
Google Scholar
Vishnu R, Nisha R, Jamuna S, Paulsamy S. Quantification of total phenolics and flavonoids and evaluation of in vitro antioxidant properties of methanolic leaf extract of Tarenna asiatica-an endemic medicinal plant species of Maruthamali hills, Western Ghats, Tami Nadu. J Res Plant Sci. 2013;2(2):196–204.
Google Scholar
Benedec D, Vlase L, Oniga I, Mot AC, Damian G, Hanganu D, et al. Polyphenolic composition, antioxidant and antibacterial activities for two Romanian subspecies of Achillea distans Waldst. et Kit. ex Willd. Molecules 24. 2013;18(8):8725–39.
Article
CAS
Google Scholar
Larayetan R, Osanekwu S, Sokwo M. Phytochemical components of methanolic fruit extract of Dennettia tripetala. J Funct Materials Biomolecules. 2018;2(2):48–52.
Google Scholar
Asagba SO, Ichipi-Ifukor PC, Ichipi-Ifukor RN, Oyem JC. Palm oil fractions Alter acute cadmium mediated Haematotoxicity. Galician Med J. 2019;26(3):E201933.
Article
Google Scholar
Woldemeskel M. Toxicologic pathology of the reproductive system. Reprod Developtl Toxicol. 2017:1209–41. https://doi.org/10.1016/b978-0-12-804239-7.00064-0.
Achuba FI, Obaremi C. Effect of selenium fortified diet on inflammatory markers in Wistar albino rats. Nig J Pharm Bio Res. 2018;3(3):209–16.
Google Scholar
Okpoghono J, Achuba FI, George BO. Protective effect of Monodora myristica extracts on crude petroleum oil-contaminated catfish (Clarias gariepinus) diet in rats. Intl J Vet Sci Med. 2018;6(1):117–22 https://doi.org/10.1016/j.ijvsm.2018.03.006.
Article
Google Scholar
Kweki GR, Ichipi-Ifukor PC, Asagba SO. High caffeine-containing energy drink-induced metabolic stress in rats. SJMLS. 2018;3(3):86–93.
Google Scholar
Atinaya DU, Ichipi-Ifukor PC, George BO, Okpoghono J. Cyanide-induced metabolic stress; the role of Aframomum sceptrum aqueous extract (ASAE). SJMLS. 2019;4(3):108–19.
Google Scholar
Ogbeke GI, George BO, Ichipi-Ifukor PC. Aframomum Sceptrum Modulation of Renal Function in Monosodium Glutamate (MSG) Induced Toxicity. UK J Pharmaceut Biosci (UKJPB). 2016;4(4):54–60.
Google Scholar
Ita SO, Aluko EO, Atang DE, Antai AB, Osim EE. Vitamin C or E supplementation ameliorates Nigerian bonny light crude oil induced erythrocytes haemolysis in male wistar rats. Biochem Mol Biol. 2013;1(3):44–51. https://doi.org/10.12966/bmb.10.01.2013.
Article
Google Scholar
Morrison G. Serum Chloride. In: Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990. Chapter 197. Available from: https://www.ncbi.nlm.nih.gov/books/NBK309/.
Google Scholar
Pfortmueller CA, Uehlinger D, von Haehling S, Schefold JC. Serum chloride levels in critical illness-the hidden story. Intens Care Med Expertl. 2018;6(1):10 https://doi.org/10.1186/s40635-018-0174-5.
Article
Google Scholar
Achuba FI. Modulation of crude oil induced alteration of oxidative stress indices in rat by red palm oil. J Appl Sci Environ Mgt. 2018;22(6):929–32. https://doi.org/10.4314/jasem.v22i6.15.
CAS
Google Scholar
Ichipi-Ifukor PC, Asagba SO, Kweki GR, Nwose C. Attenuation of Oxidative Enzymes Induction in Palm Oil Fractions Pre-treated Cadmium Intoxicated Rats. Trop J Nat Prod Res. 2019;3(4):107–12. https://doi.org/10.26538/tjnpr/v3i4.2.
Article
CAS
Google Scholar
Asagba SO. Alteration in the activity of oxidative enzymes in the tissues of male Wistar Albino rats exposed to cadmium. Int J Occup Med Environ Health. 2010;23(1):55–62 DOI: https://doi.org/10.2478/v10001-010-0002-y [PMid: 20442063].
Article
PubMed
Google Scholar
Ichipi-Ifukor PC, Ogbeke GI, George BO. Possible mechanism of Aframomum Sceptrum extracts mediated modulation of renal function after monosodium glutamate exposure. Gal Med J. 2019;26(44):E201946.
Google Scholar
Higuchi M. Antioxidant properties of wheat bran against oxidative stress. Wheat Rice Dis Prev Health. 2014:181–99. https://doi.org/10.1016/b978-0-12-401716-0.00015-5.
Fanucchi MV. Development of antioxidant and xenobiotic metabolizing enzyme systems. The Lung. 2014;2:223–31. https://doi.org/10.1016/b978-0-12-799941-8.00011-0.
Article
Google Scholar
Woolbright BL, Li F, Xie Y, Farhood A, Fickert P, Trauner M, et al. Lithocholic acid feeding results in direct hepatotoxicity independent of neutrophil function in mice. Tox Lett. 2014;228(1):56–66. https://doi.org/10.1016/j.toxlet.2014.04.001.
Article
CAS
Google Scholar
Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009;390(3):191–214 https://doi.org/10.1515/BC.2009.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Owen JB, Butterfield DA. Measurement of Oxidized/Reduced Glutathione Ratio. In: Bross, Niels, editors. Prot. Misfolding Cell. Stress Dis. Aging; 2010. p. 269–77. https://doi.org/10.1007/978-1-60761-756-3_18.
Chapter
Google Scholar
Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J, et al. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatrictumour patients. Oncol Lett. 2012;4(6):1247–53 https://doi.org/10.3892/ol.2012.931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng SB, Liu HT, Chen SY, Lin PT, Lai CYH, YC. Changes of oxidative stress, glutathione, and its dependent antioxidant enzyme activities in patients with hepatocellular carcinoma before and after tumor resection. PLoS One. 2017;12(1):e0170016. https://doi.org/10.1371/journal.pone.0170016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan BL, Norhaizan ME, Liew WP, Sulaiman RH. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol. 2018;9:1162 https://doi.org/10.3389/fphar.2018.01162.
Article
PubMed
PubMed Central
Google Scholar
Malaquin N, Carrier-Leclerc A, Dessureault M, Rodier F. DDR-mediated crosstalk between DNA damaged cells and their microenvironment. Front Genet. 2015;6:94. https://doi.org/10.3389/fgene.2015.00094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, et al. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget. 2015;6:35509–21. https://doi.org/10.18632/oncotarget.5899a.
Article
PubMed
PubMed Central
Google Scholar