Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56(4):952–64.
Article
CAS
PubMed
Google Scholar
Juurlink DN. Drug-induced hepatotoxicity. N Engl J Med. 2003;349:1974–6.
PubMed
Google Scholar
Omidi A, Riahinia N, Montazer Torbati MB, Behdani M-A. Hepatoprotective effect of Crocus sativus (saffron) petals extract against acetaminophen toxicity in male Wistar rats. Avicenna J Phytomed. 2014;4(5):330–6.
PubMed
PubMed Central
Google Scholar
Sodhi C, Rana S, Attri S, Mehta S, Yaiphei K, Mehta S. Oxidattve-hepatic injury of isoniazid-rifampicin in young rats subjected to protein and energy malnutrition. Drug Chem Toxicol. 1998;21(3):305–17.
Article
CAS
PubMed
Google Scholar
Bachs L, Parés A, Elena M, Piera C, Rodés J. Effects of long-term rifampicin administration in primary biliary cirrhosis. Gastroenterology. 1992;102(6):2077–80.
Article
CAS
PubMed
Google Scholar
Guo S, Duan J-a, Tang Y, Su S, Shang E, Ni S, et al. High-performance liquid chromatography—Two wavelength detection of triterpenoid acids from the fruits of Ziziphus jujuba containing various cultivars in different regions and classification using chemometric analysis. J Pharm Biomed Anal. 2009;49(5):1296–302.
Article
CAS
PubMed
Google Scholar
Jiang JG, Huang XJ, Chen J. Separation and purification of saponins from Semen Ziziphus jujuba and their sedative and hypnotic effects. J Pharm Pharmacol. 2007;59(8):1175–80.
Article
CAS
PubMed
Google Scholar
Zhao J, Li S, Yang F, Li P, Wang Y. Simultaneous determination of saponins and fatty acids in Ziziphus jujuba (Suanzaoren) by high performance liquid chromatography-evaporative light scattering detection and pressurized liquid extraction. J Chromatogr A. 2006;1108(2):188–94.
Article
CAS
PubMed
Google Scholar
Zhang M, Ning G, Shou C, Lu Y, Hong D, Zheng X. Inhibitory effect of jujuboside A on glutamate-mediated excitatory signal pathway in hippocampus. Planta Med. 2003;69(8):692–5.
Article
CAS
PubMed
Google Scholar
Shamsa F, Ahmadiani A, Khosrokhavar R. Antihistaminic and anticholinergic activity of barberry fruit (Berberis vulgaris) in the guinea-pig ileum. J Ethnopharmacol. 1999;64(2):161–6.
Article
CAS
PubMed
Google Scholar
Taheri S, Zarei A, Ashtiyani SC, Rezaei A, Zaheiri S. Evaluation of the effects of hydroalcoholic extract of Berberis vulgaris root on the activity of liver enzymes in male hypercholesterolemic rats. Avicenna J Phytomed. 2012;2(3):153–61.
PubMed
PubMed Central
Google Scholar
Meliani N, Dib MEA, Allali H, Tabti B. Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed. 2011;1(6):468–71.
Article
PubMed
PubMed Central
Google Scholar
Özgen M, Saraçoğlu O, Geçer EN. Antioxidant capacity and chemical properties of selected barberry (Berberis vulgaris L.) fruits. Horticulture Environ Biotechnol. 2012;53(6):447–51.
Article
Google Scholar
Melnyk JP, Wang S, Marcone MF. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res Int. 2010;43(8):1981–9.
Article
CAS
Google Scholar
Samarghandian S, Borji A. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharmacognosy Res. 2014;6(2):99.
Article
PubMed
PubMed Central
Google Scholar
Trujillo J, Chirino YI, Molina-Jijón E, Andérica-Romero AC, Tapia E, Pedraza-Chaverrí J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol. 2013;1(1):448–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhandari PR. Crocus sativus L. (saffron) for cancer chemoprevention: a mini review. J Tradit Complement Med. 2015;5(2):81–7.
Article
PubMed
PubMed Central
Google Scholar
Al-Reza SM, Bajpai VK, Kang SC. Antioxidant and antilisterial effect of seed essential oil and organic extracts from Zizyphus jujuba. Food Chem Toxicol. 2009;47(9):2374–80.
Article
CAS
PubMed
Google Scholar
Shaker E, Mahmoud H, Mnaa S. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem Toxicol. 2010;48(3):803–6.
Article
CAS
PubMed
Google Scholar
Hemmati M, Asghari S, Zohoori E, Karamian M. Hypoglycemic effects of three Iranian edible plants; jujube, barberry and saffron: Correlation with serum adiponectin level. Pak J Pharm Sci. 2015;28(6):2095–9.
CAS
PubMed
Google Scholar
Benzie IF, Strain J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70–6.
Article
CAS
PubMed
Google Scholar
Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med. 1976;15:212–6.
Article
CAS
PubMed
Google Scholar
Ložienė K, Venskutonis PR, Šipailienė A, Labokas J. Radical scavenging and antibacterial properties of the extracts from different Thymus pulegioides L. chemotypes. Food Chem. 2007;103(2):546–59.
Article
Google Scholar
Rajesh M, Latha M. Preliminary evaluation of the antihepatotoxic activity of Kamilari, a polyherbal formulation. J Ethnopharmacol. 2004;91(1):99–104.
Article
CAS
PubMed
Google Scholar
Mitchell J, Jollow D, Potter W, Davis D, Gillette J, Brodie B. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther. 1973;187(1):185–94.
CAS
PubMed
Google Scholar
Lu Y, Sun J, Petrova K, Yang X, Greenhaw J, Salminen WF, et al. Metabolomics evaluation of the effects of green tea extract on acetaminophen-induced hepatotoxicity in mice. Food Chem Toxicol. 2013;62:707–21.
Article
CAS
PubMed
Google Scholar
Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol. 2010;(196):369-405.
Arnaiz SL, Llesuy S, Cutrín JC, Boveris A. Oxidative stress by acute acetaminophen administration in mouse liver. Free Radic Biol Med. 1995;19(3):303–10.
Article
Google Scholar
Tan SC, New LS, Chan EC. Prevention of acetaminophen (APAP)-induced hepatotoxicity by leflunomide via inhibition of APAP biotransformation to N-acetyl-p-benzoquinone imine. Toxicol Lett. 2008;180(3):174–81.
Article
CAS
PubMed
Google Scholar
Olaleye MT, Rocha BJ. Acetaminophen-induced liver damage in mice: effects of some medicinal plants on the oxidative defense system. Exp Toxicol Pathol. 2008;59(5):319–27.
Article
CAS
PubMed
Google Scholar
Babaei A, Arshami J, Haghparast A, Daneshmesgharan M. Effects of saffron (Crocus sativus) petal ethanolic extract on hematology, antibody response, and spleen histology in rats. Avicenna J Phytomed. 2014;4(2):103–9.
PubMed
PubMed Central
Google Scholar
Termentzi A, Kokkalou E. LC-DAD-MS (ESI+) analysis and antioxidant capacity of crocus sativus petal extracts. Planta Med. 2008;74(5):573–81.
Article
CAS
PubMed
Google Scholar
Goli SAH, Mokhtari F, Rahimmalek M. Phenolic compounds and antioxidant activity from saffron (Crocus sativus L.) petal. J Agric Sci. 2012;4(10):175.
Google Scholar